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ABSTRACT

This report contains the documentation of a multiple linear
regression program for up to 50 independent variables, written in
FORTRAN IV for the IBM 7030 (STRETCH) computer. The program
incorporates part of the results obtained from an effort to explore
the present limitations of high speed computation in the area of
linear statistical models. DA-MRCA includes options for both
forward and backward automatic ranking of the independent variables
by order of prediction power for the dependent variable. The report
contains the description of these options, along with an outline of
the applicability of the program which includes, in a convenient
form, non-orthogonal analysis of variance. Justifications are given
for extensive checks made on the accuracy of the matrix inversions.
The resulting internal decisions and their effects on the computational
flow are described in detail. Also, a failure analysis is given in
which causes for failures to obtain acceptible inverses and possible
consequences of corrective measures are discussed.
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FOREWORD

The DA-MRCA program (Dahlgren Multiple Regression Comprehensive
Analysis) documented in this report is partially based on the TV-MRCA
program (Tennessee Valley Authority Multiple Regression Comprehensive
Analysis) of the Tennessee Valley Authority. The TV-MRCA program
became available to the authors through the SHARE Program Library.
Although much larger in scope and applicability, DA-MRCA still con-
tains some computational details from its nucleus routine, TV-MRCA.
(In order to reflect this fact the initials "MRCA" have been retained
for the present program.) TV-MRCA included, for a regression model
containing up to 23 independent variables, the bases for the features
described at the following places of the present report: Paragraph C
of Section VI.2.a.(l); paragraphs A-F of Section VI.2.a.(2) (excluding
all references to ANOVA tables, the final comprehensive analysis, IVOR,
and BIVOR); paragraphs A, B, and I of Section VI.2.a.(3); and Section
VI.2.a.(4) (excluding the option for selected input design points).
These features were applicable, in TV-MRCA, to the main run and to hand
selected reruns. The first additions to and revisions of the coding
of the TV-MRCA program were performed by Mr. R. Scanlon, Mr. D. Green,
and Mrs. Julia Gray, members of the former Scientific Programming and
Analysis Branch, Computation Division.

The work reported was done in the Mathematical Statistics Branch,
Operations Research Division, and the Operations Sciences Branch,
Computer Programming Division, with Foundational Research Funds No.
29Y/ROllOlOl/WR-6-7042 ("Computer Programs for Statistical Analyses').

The flow charts contained in the present documentation were drawn
by Messrs. Thomas B. Yancey and John S. Darling and the report was
typed by Miss Judy D. Merryman.

The work on -his report was completed on 26 March 1966.

APPROVED FOR RELEASE:

BERNARD SMITH
Technical Director
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I. INTRODUCTION

The need for a capable computer routine to solve extensive
multiple regression problems in the application of statisticAl methods
to naval ordnance research studies and other investigations at the
Naval Weapons Laboratory led to the development of the present
DA-MRCA program. Connected with this development was an effort to
explore the iresent'limitations of high speed computation in the area
of linear statistical models. The program incorporates part of the
results obtained from this research.

DA-IIRCA has served, during all stages of its development, in
the solution of actual statistical problems and, also, in research
studies to develop more advanced and/or specialized computer routines
(to be documented) for statistical analyses. After years of additions
to and revisions of the program it is felt that DA-MRCA has reached a
desired format and that its documentation is appropriate at this time.

The DA-MRCA program is written in FORTRAN IV for the IBM 7030
(STRETCH) computer and performs all the usual phases of a multiple
linear regression analysis, that is, an analysis based upon the model

Y = 00 + 0 1 XI + 0 2 X2 + + OvXv + + ONXN + e (1-1)

where

y ="dcpendent" (random) variable

Xv = "independent" (non-random) variables, v =,...,N

$v = regression coefficients, v = 1,...,N

a3 = a constant

e = "residual", or "error" term: a random variable with
expectation zero and variance a 2 , usually assumed to be
normally distributed.

The upper limit for the number of independent variables to be included
in the model is N=50. The main results of the analysis (based on a
set of observed x and y values and obtained by the principle of least
squares) are the estimates of the regression coefficients, Ov, the
constant, P0, and the residual variance, e , i.e., a prediction
formula for the dependent variable and a measure of its accuracy.
Furthermore, the following features are included in the program:
Computation of predicted values of the dependent variable at selected
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input design points and/or "synthetic" design points; computation
of prediction standard deviations for the construction of confidence
or tolerance limits at selected input design points and/or synthetic
design points; a listing of the prediction errors, Z; a bar-chart
and a Chi-square test on the normality of these errors; computation
of the standard deviations of the regression coefficients; printout
of the full inverse of the matrix of the normal equations; computation
of various other pertinent statistics, an analysis-of-variance table,
and a final comprehensive printout. For more details about these
features see Chapter VI. (It should be noted that DA-MRCA is not
capable of handling more than one dependent variable at a time.
Neither can the program obtain weighted least squares solutions nor can
it fit regression models through the origin.)

Since the theoretical aspects of the normal phases of multiple
regression analysis form a well established part of mathematical
statistics (see, for example, Anderson and Bancroft [19521), these
aspects need not be discussed in this report.

In addition to the "usual" features, the program has three
options for the identification of the 3ignificant independent variables.
These options are discussed in more detail in Chapter III. In the
first option, the model is re-evaluated on the basis of a "hand"
selected subset of N'<N independent variables. This option can be
used to test the null hypothesis on any specified subset of N-N'
regression coefficients, vy In the other two options the independent
variables are automatically ranked by order of prediction power for the
dependent variable. The first of these options employs the "IVOR"
routine ("Independent Variable Ordering by Regression Sums of Squares").
This routine uses a forward or "build-up" technique to rank the
independent variables in descending order of importance. The second
ranking option employs "BIVOR" ("Backward Independent Variable
Ordering by Regression Sums of Squares"). This routine uses a reverse
ordering technique by which the independent variables are ranked in
ascending order of importance. In Chapter III, it is shown that the
disturbing effects of possibly existing "compounds" (to be defined)
upon the ranking of the independent variables can be avoided only by
applicaticn of the BIVOR technique. Therefore, the BIVOR option is
recommended whenever feasible. There are, however, situations in
which the IVOR technique has its advantages, as also discussed in
Chapter III.

Essentially all of the "usual" features which were listed
previously are also applied, or can optionally be applied, in the
"reruns" of these three options for the identification of the signif-
icant independent variables.

2
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Also built into the program are extensive checks on the accuracy
of the computations. The elements of the calculated identity matrix
are checked for their deviations from either I or 0, and internal
decisions are made with respect to the acceptance of the matrix
inversiins according to accuracy requirements imposed by the program
user. The details of these checks are discussed in Sections VI.l.b.
and VI.2.

A preprocessor program for DA-MRCA, MTRAN, has been developed
for possible transformations of observed x and y values if such are
necessary. This program, however, is not described at length in the
present report but is covered in a separate documentation (Herring
[19661). For a discussion of variable transformations, see Sections
11.2. and VII.2.a.

The various chapters of this report are directed at different
types of readers. Chapter II is mainly for the reader who wants to
be informed about the possible applications of the program. No
specialized statistical, mathematical or programming knowledge is
required for understanding this chapter, except for Section 11.3,
where some knowledge of analysis of variance is necessary. (As in
Chapter II, programming knowledge is not required for reading Chapters
III through VII.) Chapter III is written mainly for the analyst
seeking information about the theory, techniques, and use of the
three model re-evaluation options of the program, especially IVOR
and BIVOR. (These two procedures are introduced with this report.)
Chapters IV and V define the terms used and explain the input prepa-
ration for the program, respectively, and are, therefore, essential
for any program user. Chapter VI is written for the analyst who
wants information on the computations and the meaning of the printouts.
Program running time formulae and ad¶ example problem are also given in

this chapter. Chapter VII can be of assistance to the program user in
case of a failure to obtain a problem solution. Chapter VIII is written
for the programmer and for the programming-oriented analyst. This
chapter contains the FORTRAN IV documentation of DA-4RCA (including
flow charts) and is essential for program changes and/or conversions.

The reader will notice some repetition in reading the report as
a whole. However, the report is intended not only as a complete
description of DA-MRCA, but also as a direct work aid in which case
the program user would generally refer only to a specific chapter or
section at a time. Each section contains all the necessary information,
often given in the form of references to other sections.

3
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II. APPLICABILITY OF THE PROGRAM

In this chapter the various types of problems to which the
DA-NRCA program can be applied are discussed. Some general state-
ments 2'boLt the applicability are followed by sectiouks on specific
Lypes of application.

I..1 General Applicability

The DA-MRCA program is applicable to all problems in which
-preconceived linear mathematical model of the form

Y + XI + ýZ+ + -Vx• + + S..x,. (I]-I)

is to be evaluated on the basis of nýV+l given sets of values,
y;x.,x, by use of the principle of least squares. Essentially

this evaluation consists of solving for the unknown coefficients,
0,1,...,N) and attaching a measure of importance to the

individual variables, xv, thereby characterizing their "prediction
power" for Y. In the narrower sense of multiple linear regression
(n>N-t+l) the n observations, y, of the "dependent" variable (random)
are expressed in the terms of the multiple regression model (I-I),

N
y = Y + e = ý9¢, + , xv + e,

where the x. are the "independent variables" (v 1, ... ,N) and where
e is a random variable with expectation zero and variance ce (Note
that the regression model (1-1) is obtained by merely adding the random
variable e to the mathematical model (I-1).) Although e is usually
assamed to be normally distributed, it does not have to be unless
statistical hypotheses about the 3v are to be tested, or confidence
intervals are to be constructed.

The iLh set of observations, (y; xX, ... ,XN" , is defined by

the coordikiates of the dependent variable and the N independent
variables and is called the ith "data point." The numerical data of
a given regression problem is comprised of n such data points
(i = l,...,n). The ith set of coordinates of the N independent
variables, [xlx-. , ,...xJ , is called the ith "input design point."
In general, there is no restriction concerning the relative position
of the input design points except, naturally, in the case of linear
dependeicies in the matrix of the normal equations. (See Section VII.2.b.)
For example, the design points do not have to define a complete
rectangular grid in the N-dimensional space, a situation in which
orthogonal polyromials are often used. The application of these does
require such (orthogonal) grids.

4
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The xv values, in the theory of multiple regression, are assumed
to be non-random, that is, they are determined at the will of the
experimenter. However, in a more general interpretation, they may
also be values which have been measured, or observed, without
appreciable error. Sometimes multiple regression is applied in such
a broad sense that the only requirement for a given variable being
used as en "independent" variable, is the assumption of a cause-
effect relationship between the variable and the "dependent" variable,
y. All errors originating from the "independent" variables xv are
then attributed, by definition, to the variability of y, and the xv
are again considered as non-random variables. According to the
definition of the model (I-1), the y values for a given design point
are assumed to be randomly and independently sampled from a distri-
bution (usually normal) with expectation

N
~•=l

2
and variance o-.

With the above, the general linear multiple regression problem,
to which DA-MRCA is applicable, consists of fitting a least squares
surface of the form (11-1) to n observations yi at n input design
points (not necessarily all distinct), where these points are located
in the N-dimensional space defined by the N independent variables.
Specifically, the program serves to identify those independent
variables which explain a significant portion of the variability in
the numerical values of y, or, in other words, which have significant
prediction power for y. One possibility to arrive at this identifi-
cation is by application of the automatic ranking procedures IVOR and/or
BIVOR. IVOR and BIVOR each provide for the ranking of all N independent
variables simultaneously, or for ranking independent variables within
specified groups. A second possibility to identify the significant
independent variables is to apply the option for "hand selecting" a
specified subset of independent variables to be deleted from the
original model, and then test the contribution of these deleted
independent variables to the fit. Also possible is the computation
of statistics necessary for the construction of confidence intervals
for the true response values Y at the input design points and/or
"synthetic" design points located within the original experimental
space.

By definition, the least squares fit for the model (I-1.) reduces
to a "perfect fit" when the number n,,(n.,,-:n) of distinct inpu. design
points in the N-dimensional space is equal to N+l. When nN=n(=N+l),
i.e., when there is exactly one value y. at each distinct design point
(the surface being a perfect fit to each individual value yj, i=l,2,...,n),
the fit is called a "zero-error perfect fit." This "non-statistical"

5 .................
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or "deterministic" use of multiple regression is also possible with
DA-MRCA, as was implied in the statements about the model (II-1) at
the beginning of this section. The application of the program in
this case is discussed, in more detail, in Section 11.4.

The linearity of the mathematical model (II-1) depends only
on the linearity of the unknown parameters, i.e., on that of the bv's.
The general linear model, consequently, can be conceived to be of
various forms, each of which can be fitted by DA-MRCA. For example,
each xv can be a (non-linear) function of one or more other variables.
Some of the more common equations of linear form are discussed in
Section 11.2. There are also many equations that, although non-linear
in their parameters, can be made linear by an appropriate transformation.
The use of DA-MRCA in fitting this type of equation is also discussed
in the next section (11.2).

In order to solve a regression problem a decision must be made
as to which independent variables should be included in the model and
in which functional form the chosen independent variables should be
included in the model. Helpful in this decision may be theoretical
considerations, previous experience with the variables, a plot of the
data, or some other means. Of particular help can be the use of the
program's ranking methods IVOR and BIVOR. These methods allow the
analyst to start with a possibly very elaborate model (a polynomial,
in general) in which all terms having in reality little or no
prediction power for the dependent variable, y, will automatically
be identified.

The use and application of IVOR and BIVOR are explained in
detail, together with the discussion of the theory of these ranking
procedures, in Section 111.2. There it is shown that the BIVOR option
should be used, whenever possible, for the automatic rankirg of the N
independent variables.

11.2 Specific Linear Models and Linearization

The most straightforward application of the general linear model
(Ii-i),

Y= + •x: + :tx.: + . + VxV + " + 0xf,

occurs when all N variables, xv, represent the first powers of

original observed independent variables. In the example case given
in Section VI.5, where the dependence of y = Ballistic Limit (of
projectile) upon Thickness and Hardness (of target plate) is analyzed,
such a straightforward model would include only the two original
independent variable. Thickness (xl, say) and Hardness (x:, say), and
would, therefore, have the form:

6



NWL REPORT NO. 2035

Y = ýo + x+ 1x .

As indicated before, however, the xv can also represent functions of

the form

xv = fvfzv1 , fZV , ... , zv,, ... }, (11-2)

where these functions do not contain parameters to be estimated and
where the zv, are variables (assumed to be non-random) whose observed
numerical values completely specify the numerical value of xv. The
simplest example of such functions are the polynomial terms xv=zv of
a single original independent variable, z. A model containing only
these terms would appear as

Y = ý0 + 01z + 0z 2  + "'" + ývzV + "'" + gNZ ,

that is, as the equation of an Nth degree polynomial in one variable.
More generally, the xv can represent polynomial terms in several
original independent variables, z1 . This implies the applicability
of DA-MRCA in the important area of multivariate polynomial fitting
with up to N=50 polynomial terms, including the linear terms. The
data handling in this case is very simple because the numerical values
of the polynomial terms can be automatically generated by the program.
The program user merely specifies which polynomial terms are to be
included in the model and writes as input only the numerical values of
the original independent variables, zj. From these, the values of the
terms of higher than first order are automatically generated and
internally used as input for the generation of the matrix of the normal
equations. As is true for any type of independent variable, xv, the
use of the options for hand selected reruns or for IVOR and/or BIVOR
will provide the analyst with the desired information concerning the
necessary degree of the polynomial needed in the fit. This enables
the program user to maximize the "goodness of fit", provided that
he starts with a polynomial equation of high enough degree in all
original independent variables. IVOR and BIVOR will automatically
rank the polynomial terms according to their prediction power for y
and thus provide the analyst with a basis for choosing a "significant
model." To illustrate this with the example of Section VI.5, the
analyst might have assumed that the polynomial in x, = z, " Thickness
and x2 = za = Hardness would not have to be of higher than the second
degree in order to predict the Ballistic Limit, y, sufficiently well.
Accordingly, he would enter the program with the model

Y = 00 + 01zi + op + 51zi + z4 + FpZ,.

7
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Numerical input would be (besides y) only xl-=zl and x,,=z•, whereas
2 2x:4=zi, x 4 =zIz2, and xE-=z2 would be generated by the program. The

application of BIVOR, say, might yield as the "significant model"
(using the symbols Y and bv for the estimated parameters):

Ybr+b1 z1 +b 4 +.

Here, it is implied that BIVOR ranked the iriables zý., zj, and z~as
the least important ones and that their Lontribution to the fit was
found to be nonsignificant according tc a prechosen significance level.

As indicated before, both IVOR and BIVOR contain an option for
grouping the independent variables such that the ranking process takes
place within only one group at a time. (For more details see Sections
VI.l.d and VI.l.e.) This grouping can be applied to the case of poly-
nomial terms such that terms of equal degree, for example, will be
ranked exclusively among themselves. The reader is referred to Section
VII.2.a for an important application of this feature in connection with
using transformed variables to increase the computational accuracy when
fitting polynomials.

Although polynomial terms are the most frequently occurring type
of functions, fv, in formula (11-2), functions other than polynomials

can as well be represented by the xv. Examples are xv=zvisin(zv:.),
x,=vz- z•. , X.;.log zV, etc. In particular, such functions will occur
when linearization of the given (non-linear) model must be achieved
by transformations.

Although the method of least squares may also be applied to
non-linear models, the normal equations which result are non-linear
in the parameters and generally must be solved by iterative methods.
DA-MRCA is not capable of fitting such equations, but some of the
non-linear equations can be evaluated after performing the appropriate
transformation that leads to the necessary linear form. Suppose, for
example, the analyst wishes to consider the non-linear equation

Y* Mo ZY)

as the model. (The asterisks are used for distinction of the terms
of the non-linear model from those of the linear model.) A simple
transformation to either common or natural logarithms will result in
the linear equation

log Y* log , - 8 log z,

8
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which is identical to the general linear model if one lets log Y*-Y of
the linear model, log •-B> and log zý=xj. In this case, therefore,
the logarithms of the values of both the dependent and independent
variables must be used as input to the program. The resulting least
squares equation can be retransformed into the original .fr by
substituting the antilog of the estimated coefficient log B' for
b0 in the original equation as expressed in estimated terms:

Y* =b*(zb

Another example of a non-linear model that can be linearized by a
logarithmic transformation is

This will lead to

log Y* = log 50 (log 81 )zI + (log $:2.z2.

With log Y* = Y, z, = xj, z: = x•, in this case, the logarithms of only
the values of the dependent variable have to be used as input.

It should be noted that, whenever a transformation is used to
linearize an equation, it is the sum of squares of deviations on the
transformed variables that is minimized and not the sum of squares on
the original variables. This has consequences in the use of the results
from DA-MRCA: point and interval estimation must be done based on the
calculations for the transformed variables. Only after the predicted
values and/or confidence limits have been computed, will they be
re-transformed into the original scale of the non-linear model. As
a result one obtains, for example, non-symmetric confidence limitsA

about the Y values.

Often it is necessary to apply a transformation only on the
dependent variable in order to achieve a normal (or near-normal)
distribution for y as is desired in many cases. (The built-in
Chi-square test on the normality of the residuals, e, may give an
indication for the necessity and type of such a transformation. See
Section VI.l.c.) Another reason for transforming y only could be to
stabilize the variance which might be a function of the coordinates,
XV, of the design points. It is a known fact, however, that in many
cases in which a transformation of the y values is appropriate for
either of these two reasons, it is also necessary for the other one.
In addition to this, experience has shown that when the experimental
data indicates the necessity of a transformation for normalizing the
y values and/or for stabilizing their variance, often this is the
only transformation which also linearizes the functional relationship

between Y and the x's. For example, in the model Y* = 0*(0)z•, the

9
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observations y* of the dependent variable will usually not be distributed
normally, but the values of y = log y* = log 00 + (log ý*1)zj + e often
will be.

Because of the importance of the various transformations it is
repeated here that the preprocessing program MTRAN ("DA-MRCA Trans-
formation", see Herring [19661) is available for use in conjunction
with DA-MRCA. This program can perform the following transformations
on the values of the dependent variable, the independent variable(s),
or on the values of both types of variables:

In (A+x)

In [B+ln (C+x)] *)

fx

D+x

Sin-' x

2 Sin-1 x

sin x

Cos x
CSX

E

X-
R,

*) The constants A, B, C, D, E are to be specified by the
analyst.

**) This transformation is only for the independent variables.
The purpose is to increase the matrix inversion accuracy. For details
see Section VII.2.a.

10
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11.3 Non-Orthogonal Analysis of Variance and Covariance

DA-MRCA, being a program for general multiple linear regression,
can naturally also be applied to analysis of variance and covariance
models, in particular to data classifications with incomplete and/or
unbalanced data (non-orthogonal ANOVA). For the general discussion of
the multiple regression treatment of non-orthogonal analysis of variance,
see Brownlee [1960].

As an example of the application of DA-MRCA to non-orthogonal
analysis of variance, a 2x3 crossed classification with qualitative
factors and with unequal (and non-proportional) cell numbers is treated.

The two factors of the example are denoted as 67 and 5, and the
analysis of variance model is:

Yasp = Yao + eafp = + a. + bo + ab.l + eatp.

The various terms have the following meaning:

Ya8p = pth observation in cell "cv" of the response variable
(random), where

p = l,...,Ra
S= ,.. .,A
8 1, .. .,B

with Rao being the number of observations in cell "&5"
and with A and B being the numbers of levels in factors 17
and 8, respectively (A=2 and B=3 in the present example);

YQ8 - expected or true value of the response variable y in

cell "W'";

4 = general constant;

so = constant for level t of factor a;

bo = constant for level 0 of factor B;

abao a interaction constant for level combination n;

edep a error term, assumed to be normally independently
distributed wLth expectation zero and variance "

In the multiple regression approach to this casu of only
qualitative factors the model constants (in the example: ", _.i, be,
and ab0 g) become the regression coefficients of auxiliary independent
variables which take on only the values I and 0, as will be demonstr Led
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below. For the inversion of the matrix of the normal equations, linear
restrictions have to be imposed on the estimates of the various sets of
constants, reducing the number of constants in each set to the number
of degrees of freedom available in each corresponding factorial effect.
For example, there are A main effect constants aa in factor Li, but
only A-1 degrees of freedom are available in the main effect of ;.

Since in non-orthogonal analysis of variance for qualitative factors,
the estimates of only the contrasts between model constants are
meaningful rather than the estimates of the constants themselves (see,
for example, Graybill L1961], Chapter 13), the choice of the type of
linear restrictions imposed on the estimates of the model constants is
arbitrary. For the ease of computation, a good choice is to let the
last constant in each set be equal to zero. Applied to the present
example, this means:

a= = aoaB Q : ab : 0; 0 = l,...,A; ( =

The model of the example can be written (using the notation for the
estimates which are in reality only to be found later by least
squares):

In this equation, x is a dummy variable always taking the value 1 and
the x., i=l,...,5, are the above mentioned auxiliary variables.

Each of the 6 cells then leads to an equation of the above form
for each of the corresponding RL observations, giving altogether

2 3
SRaB :_ R..

.. 1 .-i 1

input design points for the multiple regression approach:

I. ,. 6, . ab oI ,ab: 0

^.1 1 S 0 0 q b11 -0 + ;1b 0

. A .0 b t .0 ,b,..O &^b. .0
.. a.,10 *0 *1+l,. abt; '0

. . .1 0 b b .o alb, .-0 ab,.. .0

In this example, the numerical values of the auxiliary "independent"
variables associated with the interaction terms, x. and x., can be seen
to be the products of the values of the auxiliary independent variables

associated with the two appropriate main effects, x and x , and x and

12
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x:., respectively. This "product rule" applies correspondingly also to
all crossed classification models containing higher order interactions,
which simplifies greatly the input writing for non-orthogonal analysis
of variance and covariance for qualitative factors: only the l's and
O's of the auxiliary variables for the main effects need be input. The
numerical values of the interaction variables are generated by the
program as products according to the specifications put on the appropriate
control card. (For details, see Section V.2, Card Type 3.)

With the design matrix thus generated, the least squares procedure
yields the model estimates, or "regression coefficients", 4, a•, b1 , be,
aba, and ab,: . Also, the sum of squares between cells or "total
regression" sum of squares is given. By the hand re-evaluation option
of DA-MRCA, null-hypotheses concerning the various factorial effects
can be tested. However, it is not recommended to test a null hypothesis
on the main effects _or 5 as long as the interaction OE is present in
the model. The reason is that the additional regression sum of squares
due to ýi or 8•, or, more specifically, due to the auxiliary variables
x1 , or x:. and x:,, associated with a or 13, respectively, is dependent
upon the arbitrary restrictions imposed on the model constants as long
as x, and x are present in the model. (See Scheffe' 19591, p. 117.)
The additional regression sums of squares due to a or B become
independent of the arbitrary restrictions only when the auxiliary
variables x 4 and x. of the interaction a are deleted from the model.
Therefore, the recommended sequence of testing in the present example
is to first delete simultaneously x,; and x- (thereby obtaining the
additional regression sum of squares due to ^_), and then, to delete
the independent variables associated with both 4 and a or both 66
and 19, provided the interaction tA is not significant. This type of
procedure will be referred to as testing under "restricted admissibility",
i.e., initially oniy a9 is "admissible" for testing but C and 8 are not.

In order to illustrate the application of DA-KICA to non-orthogonal
analysis of covariance one merely would have to add covartates to the
above ANOVA model of the 2x3 crossed classification example. The
covariates become part of the model for all calculations and remain part
of it during the testing of any specified null hypothesis concerning the
factorial effects.

Since the DA-MCA program can handle up to Nu50 independent
variables, 50 is also the upper limit (or the number of degrees of
freedom for factorial effects to be included in non-orthogmnal analysis
of variance models. In non-orthogonal analysis of covariance this
upper limit of the degrees of freedom for factorial effects is reduced
by the number of covariates included in the model.

Since, Lia general, individual factorial effects will have more
than one degree of freedom, the automatic ranking procedures MVOR and
BMVOR generally cannot be applied .for the ranking by significance of
factorial effects. In cases of only single-degree-of-freedom quail-
tative effects, however, this application is possible. For testing
under "restrictqd admissibility" as discussed before, the single-degree-

13
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of-freedom effects must be grouped, in DA-MRCA, according to dteirorder
i.e., main effects first, then 2-factor interactions, then 3-factor
interactions, etc. Since the ranking is done within only one group
at a time, this application of BIVOR (or IVOR) guarantees the
restricted admissibility of the effects for testing, although in an
overstrict manner. For example, in a 2x2x2 factorial classification,
the one-degree of freedom effects would be grouped as follows. Group
1: 7,, C-,; Group 2: 0Z, 6r,, 1--; Group 3: 0C. BIVOR would delete
OWZ first, then rank 627, Or,, and W[2, and finally (after deletion of
both the third and second group) rank 67, a, and C.

Note: Work is presently in progress on the documentation of
NOVACOM, a FORTRAN IV program for "Non-Orthogonal Variance and Covariance
Analysis by Multiple Regression" which is able to automatically rank
multiple-degree-of-freedom factorial effects under restricted admissi-
bility. NOVACOM is based on the ideas that were indicated in this
section and, in addition, on some of the suggestions contained in Abt

.L1 9 6 5].

11.4 "Non-Statistical" Applications of DA-MRCA

As already mentioned in Section 1 of this chapter, DA-MRCA also
provides for the possibility of "zero-error perfect fits." These
were defined to be "perfect fits" (n., :N+l) in which there is exactly
one y value at each of the nflp,!n distinct design points. Since in
these cases the "error", or the residual variance, is zero, the
essential element of statistics is absent. Consequently, there is
no possibility to apply statistical tests or to perform interval
estimation.

The least squares method degenrtates to the solution of a system
of Nil linear equations of rank NH-, hiaving as a solution the perfect
fit. Such a zero-error perfect fit has one of its many applications as
at, Lnterpolation formula. Since MVOR and BIVOR are independent of the
existence of an error term, they both can be applied in the case where
the pre-conce~ved model (i.e., the model with the N independent variables
of the "main run") is a zero-error perfect fit. The subsequent independent
variable selectionis by IMOR or BIVOR will give (least squares) inter-
polation fits of monotonically changing overall accuracy. From those
the analyst cati choose the model which satisfies his accuracy require-
ments with respect to the prediction of the original values of the
response variable, Y. This technique is sometimes very useful when a
closed expression of sufficient accuracy is to be found for the entries
of a iable of values.

14
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III. THE IDENTIFICATION OF SIGNIFICANT INDEPENDENT VARIABLES

III.1 Testing A Specified Null Hypothesis by the Main Theorem

The testing of a linear hypothesis concerning the contribution
of any specified subset of N-N' independent variables to the regression
sum of squares due to N independent variables is made possible by a
model re-evaluation option of the program. The test is based on what
may be called the Main Theorem of Multiple Regression. The content of
this theorem, see, for example, Anderson and Bancroft 19521, p. 172,
is as follows:

In the general linear model (I-1),

N
y 4-~ B. x.. " e,

the residuals, e, are assumed to be normally independently distributed
with expectation zero and variance "a. Then, under kj[v 1  = .
= = 0), where t$.., S.* , ... , , are the regression
coefficients of the N-N' independent variables whose contribution to
the regression sum of squares is to be tested, the variance ratio

Fe = S.-s, / ATSS - ASSR.. (Il-I)
N-N' / n-N-I

is distributed as F with N-N' and n-N-i degrees of freedom. The terms
in this formula are defined as follows:

ASSitN - "total" regression sum of squares (adjusted for the mean),
with N degrees of freedom, due to all N independent
variables;

K ASUSI - ASSR, '-,"additional regression sum of squares",
with N-N' degrees ot freedom, due to the specified
subset of N-N' independent variables, where ASSR,,, is
the regression sum of squares (adjusted for the mean)
due to the N' independent variables left in te .model
*fter deleting the N-N' independent variables whose
contribution to the fit is to be tusted;

A

ATSS 2y '+ - total sum of squares (of y) adjusted for
LiI
the man, with n-1 degrees of frecedm;

a , total number of observed y values.

15
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When using the model re-evaluation option, the analyst merely
specifies the N-N' independent variables, whose contribution to the
regression sum of squares is to be tested, by indicating the comple-
mentary N' independent variables for which the program will make a
"rerun." The specified set of the N' independent variables in a
particular rerun of this option is called a "Hand Selection" of
independent variables in order to distinguish it from a set auto-
matically arrived at in any rerun of IVOR or BIVOR.

The F ratios (111-1) are computed and listed for all specified
reruns in a "final comprehensive analysis table,"

111.2 Ranking by IVOR and BIVOP.

The subroutines IVOR and BiVOR for the automatic ranking of the
independent variables by order of importance are also based on the Main
Theorem. The routines may serve to separate the non-significant
independcnt variables from the significant ones (or to find a "signifi-
cant model") according to the F ratio (111-1) which is computed at each
step. IVOR and BIVOR are particularly useful when the analyst knows
nothing about the relative importance of the N IV's, or when the
program user wants to confirm earlier results with new sets of input
data.

The ranking of the independent variaoles in IVOR and BIVOR is
done according to their prediction power for the dependent variable.
This prediction power is measured by the additional regression sum of
squares, SSN._, , (from the Hain Theorem) which is due to the iudependent
variables in question. It is possible to use, as ranking criterion, the
additional regression sum of squares, or its complementary value, ASSRN,
since the associated degrees of freedom are equal for each incependent
variable to be ranked. Therefore, th2 F test of the Main Theorem,
within each step, has equal power with respect to degrees of freedom
for each independent vartable to be rarked.

The rankings proceed as follows:

In IVOR, a forward ranking proces7 is executed, which, at the
first step, searches among all N independent variables for the one which
yields the largest value ASSR%,= ASSR1 . Ibis is the one independent
variable among the N which, when it is the only one included in the
model, explains the largest portion of the total regression sum of
squares, ASSR4. In the second step, IVOR searches for that pair of
independent variables, consisting of the independent variable ranked
most impcrtant in the first step, plus one of the remaining N-1
independent variables, which yields the largest value ASSRN, = ASSR2.
This is continued through step number N-1, at the end of which the first
N-I most important independent variables will have been ranked. The
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least important independent variable (Number N) is, thereby, determined
automatically. Obviously, this ranking procedure results in a descending
order of importance of the independent variables.

In BIVOR, a reverse ranking process is executed, which, at the
first step, searches among all N independent variables for the one
which yields the smallest value SSN.N*= SSN-(N-1) = SS1 . This is the
independent variable among the N which, wheu deleted from the model,
gives the smallest additional regression sum of squares. In the second
step, BIVOR searches for that pair of independent variables, consisting
of the independent variable ranked least important in the first step
plus one of the remaining N-1 independent variables, which yields the
smallest value SSNN' = SSN-(N- 2 ) = SS2. This is continued through
step number N-1, at the end of which the N-1 least important independent
variables will have been ranked. The most important independent
variable (Number N) is, thereby, determined automatically. As can be
seen, the BIVOR ranking procedure results in an ascending order of
importance of the independent variables.

In both IVOR and BIVOR the independent variables can optionally
be grouped such that the ranking process is performed within only one
group at a time. For details and for an application of the grouping
feature as a device to save computing time, see Sections VI.l.d and
VI.l.e; for other applications see Sections 11.3 and VII.2.a.

As indicated earlier, the ranking of independent variables by
their prediction power in both IVOR and BIVOR is mainly a means of
identifying those IV's (independent variables) which have a significant
prediction power for the dependent variable. In addition to this, the
rankings give the experimenter an indication of the relative importance
of the IV's, and these rankings sometimes are valuable in their own
right. Generally, however, the goal to be achieved with such rankings
is to determine a "significant model" containing a minimum number of
IV's with maximum prediction power for the dependent variable. It is
emphasized that, for this goal, the rankings as done by IVOR and BIVOR
are not ideal but are feasible and considered to be adequate. (For a
discussion of the "ideal method" see Secticn 111.3.)

It is important to note that an independent variable which, by
itself, has a large prediction power for y might not appear to have
such in the ranking by IVOR oc BIVOR. This could happen, for example,
for one Cf two correlated (possibly highly) independent variables when
both of them individually have considerable prediction power for y.
Both IVOR and BIVOR would put the one independent variable of the two
which has the higher (possibly only slightly) prediction power into the
group of important independent variables and might rank the second oue
as being unimportant. Accordingly, this second independent variable
may then appear to have little or no prediction power. It must be

17



NWL REPORT NO. 2035

recalled, however, that the prediction power of an independent
variable, as defined here, is the additional prediction power in
excess of that of the other independent variables already contained
in the model. By itself, the second independent variable may be very
impcrtant, but in combination with the first one it loses all its
significance. Thus the ranking order, as established by IVOR or
BIVOR, must be viewed under the aspect of the strictly prediction-
power-oriented character of the ranking processes.

One might expect that IVOR and BIVOR will yield the same
ranking order of the independent variables. However, this is, in
general, not the case. One reason for this difference is the possible
existence, in the data of a regression problem, of a so-called
"compound" which has been defined in Abt [1965]. In brief, a "compound"
is comprised of a set of PN independent variables plus the dependent
variable when the error variance a associated with all 1 independent
variables is smaller, by orders of magnitude, than the error variance
associated with any subset of 1-1 independent variables, i.e., after
any single independent variable has been excluded from the set of!R
independent variables comprising the compound together with y.

The effect of the existence of a compound upon the ranking of
independent variables is such that in the forward procedure (as
executed by IVOR) an independent variable which does not belong to
the compound might be ranked as most important and possibly as
significant, whereas in the reverse procedure (as executed by BIVOR),
this same independent variable might be ranked as least important
and possibly as non-significant. The explanation is that in reverse
ranking (BIVOR) the unity of the compound with its associated small
error variance is preserved, as it should be, until the latest
possible step of the procedure, whereas in forward ranking (IVOR)
this unity could not be reached before the Rth step, and possibly
not until the very last step. A numerical example in which the
latter actually happens is also given in Abt [1965].

Only when both ranking procedures result in equal, or nearly
equal, orderings will the analyst know that there are no compounds
(or no compounds of any consequence) present among the independent
variables. The only protection against the disturbing effects of
compounds upon the ranking is the application of the BIVOR routine.
It is, therefore, strongly recommended to always use the BIVOR
option for the automatic ranking of independent variables. Moreover,
BIVOR is always an economical choice since a BIVOR ranking is at
least 4 times faster than a full IVOR ranking. (For computational
details and problem running time formulae, see Chapter VI.)

There are, however, two situations in which IVOR becomes a
desirable option. A less-important third situation is discussed in
Section VII.2.b, where IVOR is shown to be advantageous in finding a
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"perfect fit." The first situation arises when a large series of
multiple regression problems of equal structure (with the same
independent variables contained in the model for each problem) have
Lo be processed and when the following two conditions hold true:
(a) the sum of the BIVOR running times would be excessive; (b) one
is only interested in a screening-type investigation as to the first
few most important independent variables in each problem. For this
situation IVOR has a cut-off option to search only for the first
";IIQ" most important variables, where IQ is a control card input
aiumber. (See Card Type 4, Section V.2.) That is, IVOR ceases
ranking after step number IQ and, therefore, does not rank the N-IQ
teast important independent variables. Naturally, this application
of the IQ-option of IVOR implies the risk of not detecting the ef.fects
ý.f possibly existing compounds upon the ranking order. However, this
Ls the price for saving computing time. (For IQ much smaller than N
the running time of IVOR is considerably shorter than that of BIVOR;
see time formulae in Section VI.4.)

The second situation in which IVOR becomes desirable also calls
ior the cut-off option of IVOR. The situation arises when, in a given
problem with many independent variables, the significant IV's are to
-)e found, but the final model is to be kept to a minimum number of

undependent variables in order to obtain small standard deviations
tor interval estimation purposes. In such a situation, the analyst
1hould apply both BIVOR and IVOR, the latter with an IQ, say, in the
icinity of what is considered to be the maximum number of independent

:ariables to be included in the final model. If there are no com-
aounds, it is possible that the first IQ most important independent
,ariables (or a subset of them), as ranked by IVOR, account for a
tigher portion of the total regression sum of squares than do the
Sorresponding number of the most important indeendent variables in
iIVOR. However, this evidence can be obtained only by comparing the
esults from both IVOR and BIVOR. This fact serves to re-emphasize
Aie importance of the BIVOR routine, which should be applied for the
anking of the independent variables--alone or together with the IQ-
ption of IVOR--whenever the available computer time allows its use.

111.3 Comparison of IVOR and BIVOR with Other Techninues

The rankings of the independent variables as done in IVOR and
kVOR correspond to "forward" and "reverse" ranking, respectively,

Sdiscussed in Abt r19651. The IVOR ranking proceeds in the same
_,:neral forward direction as the "StepwLse Hultiple Regression"
technique by Efroymson [1960), but is otherwise different from that
echnique, as is obvious from reading Sections 111.2 and VI.L.d.

Only after the D&-MMCA program was completed in its present
t brm, a paper by Hamaker [1962J came to the attention of the authors
ik, which two computational methods are discussed for the successive
.. tclusion and deletion of independent variables: "forward selection"
•-id "backward elimination", respectively. Thero two methods are
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based on analyses of successive residuals, and, therefore, do not
immediately seem to imply results which could be identical with those
of IVOR and BIVOR, respectively. However, the numerical results of
examples exhibited in the paper certainly suggest this both with
respect to the ranking orders of the independent variables and the
associated additional regression sums of squares. No attempt has been
made to prove the general equality of the results of IVOR and "forward
selection" or of those of BIVOR and "backward elimination."

As mentioned in Section 111.2, IVOR and BIVOR are not ideal but
are considered adequate for the purpose of ranking independent variables
by order of importance and, thereby, finding a "significant model."

Naturally, the ideal method for determining the "significant
model" would be to find the most important IV as in the first step
of IVOR, but then to deviate from IVOR as follows. In the second
step all ½N(N-l) possible pairs of IV's would be included in the model,
and the one with the largest prediction power would be selected as the
most important pair. Correspondingly, in the third step the most
important triple of IV's would be found, etc. Since the most important
pair of IV's would not necessarily contain the most important single
IV found in the first step (and correspondingly for the triple versus
the pair, and so on) a unique ranking would not necessarily result from
this procedure. The significant model, however, would be found at the
step where the F value (III-1) is non-significant for the first time,
and the procedure could be stopped at this point. This "ideal"
technique may be feasible for small values of N, but for larger N,
such as IVOR and BIVOR are capable of handling, the indicated
technique is infeasible with even the largest computer equipment
available at the present time. In order to illustrate this, the
following comparison of estimated minimum computer times (in seconds,
on the IBM 7030 STRETCH) for the "ideal" technique to the actual
running times of BIVOR, according to formula (VI-23) in Section VI,4,
is given.

N 8 16 32

"Ideal" technique for

finding significant 24 25400 6.9 x 10l
mode I

BIVOR 6 13 71

Ratio 4 -.1950 1.40

This table shows, for example, that with N=16 independent
variables in the model, the estimated minimum computer time on the IBU
7030 for the "ideal" technique is 25400 seconds, which is approximately
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1950 times the number of seconds BIVOR would need to rank the 16 IVWs.
For N=32, the figure is 6.9 billion seconds, whereas BIVOR needs a mere
71 seconds. The times for the "ideal" technique are based on the
assumption that all 2N-1 combinations of the IV's are examined.
Naturally, these times would be, on the average, much smaller if the
procedure were stopped after the significant model was found. However,
the analyst could not predict at which step this would happen, and he
probably would have to consider the times based on the 2 N-I combinations.
The result would be only the significant model, with no indication as
to the relative importance of either the IV's contained in the
significant model or of those not contained in the significant model.

Nevertheless, when N is sufficiently small, the program user can
apply the "ideal" technique by using the option for hand selections of
independent variables. The nurnber of hand selected reruns is restricted,
in one regression problem, to 999. (See Section V.2, Card Type 2,
columns 5-7.) Therefore, N=9 is tl'e upper limit for the number of
independent variables contained in a model which is to be analyzed by
the "ideal" technique: 29-i = 511. However, the analyst has to
specify each combination of independent variables required by the
"ideal" technique orn a rerun card (see Section V.2, Card Type 10).
In other words, the tecanique cannot be executed automatically by
DA -MRCA.

Gorman a7id Toman [1966] have recently suggested a modification
of the "ideal" technique by applying fractional factorial plans to
sample the 2 N- 1 possible combinaLions of IV's in order to reduce the
computational effort required for the "ideal" technique.
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IV. DEFINITIONS FOR INPUT. COMPUTATIONS. AND PRINTOUT

In this chapter the definitions of technical terms which are
used in the following chapters are listed alphabetically. (Some of
these terms have already been used in the previous chapters.) This
list of definitions includes such familiar terms as, for example,
"independent variable" and "data matrix." However, since such
terms are often used in the literature with varying shades of
meaning, the authors decided to include these in the list because
a clear definition was considered necessary for the present purpose.

In the wording of each definition all the terms which are
defined elsewhere in the list are marked by a dashed underline. The
definitions are as follows:

A - The symbol used for the matrix of the normal equtions.

Accepted Run - A run which gasses all 5 tests concerning the feasibility
and accuracy of the solution of the normal equations associated
with the regression model for the given run. The five tests are
those on the determinant, R2, s2 , the cvv, and the ivv. For
details see paragraphs B, D, Es F. and H of Section VI.2.a.(2).

Additional Regression Sum of Squares - In the Main Theorem the regression
sum of squares, SSN-.N*, due to the addition of a specified subset
of N-N' inde•endent variables to the model containing the N'
independent variables.

ASSR - "Adjusted (for the mean) Sum of Squares due to Regression." For
the algebraic formulation of ASSR see Section VI.3.a. The term
is used, in the report, in two applications:

(1) ASSR, = ASSR value due to K .

(2) ASSR(xc,xa,...) = ASSR value due to the set (xiaxo... ) of
independent variables.

BIVOR - "Backward Independent Variable 2rdering by legression sums of
squares." BIVOR is an optional subroutine which ranks the
LD4!ftU•¥ULYK&OtIE in ascending order of importance according
to their contribution to the total , g..[ess .io uo.2f.sc6uares.
See Section 111.2 and Section VI.l.e for further explanation.

Calculated Identity Matrix - See definition of "identity matrix."

Card Type - One of the ten types of cards which constitute the troblem
deck. Each type of card is punched according to the input
explanation and format given in Section V.2.

cvv'" The element in the (vtl)th roaw and (v'+l)th column of the inverse,
A-', of the matrix of the normal equations. (,',v' a Ol,2,...,.K)
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Coding - A term sometimes used for the transformation of the coordinates
of the OCIV's to increase the computational accuracy, where the
specific transformation recommended is v=(x-x-)/R.. See Section
V1t.2.a for further discussion.

Coordinate - The numerical value of an independent variable or of the
dependent variable specifying, for the corresponding variable,
the location of the design point or the data point. The observed
numerical values of the dependent variable and the OCIV's are
sometimes referred to as "observed coordinates", in contrast
to the computed coordinates of the GCIV's.

Data Matrix - The nx (K+l) matrix consisting of the n data.2ints§. With K=N or
K-N'-.4, the data matrix is defined for the main run or for any
rerun, respectively. The data matrix is printed only for the
main run, see Section VI.3.a.

Data Point - A point specified by its K+l coordinates in the (K+I)-
dimensional space which is defined by the K independent variables
and the dependent variable. With K=N or K=NT<N, a data point is
defined for the main run or for any rerun, respectively. The
number of data points'[not necessarily all distinct) in a given
re&ression.problem is called n. As can be seen, a data point is
aefined by the coordinates of a design R2 int and the coordinate
of the dependent variable. Since several data points can be
based on a common design point, one has nn,, where n, is the
number of distinct input design points in the space defined by
the K independent variables. .

Dependent Variable - The response variable, y (random), for which a
numerical value yt, i z 1,2,...,n, is observed at each one of
the n observed (not necessarily all distinct) input design points.

Design Matrix - The n x(K+l) matrix, denoted by X, of the n .QgK•Bt•
of the K independent.variables, augmented by a column vector of
n l's for the constant, xu"l. With K=N or K=N'CN, the design
matrix is defined for the main run or for any reruna respectively.
Each row of the design matrix represents an input.tdesignpoint,
not necessarily all different.

Design Point - A point specified by its K coordinates in the K-dimensional
space which is defined by the K indeenentv.yariables. With K.:N
or KfN'<N, a design point is defined for the main run or for any
re.un, respectively. The symbol used for a design point isT~jx•b ,,... SKY$ ... ,xK IJ.

Distinct Design Point - A designpoint specified by a unique combination
of K coordinates. With K=N or K=N%-N, a distinct design point
is defined for the main run or for any rerun, respectively. The
number of distinct input design points in a given run with K

e•e•.ue nt.¥[iob.e§ is called n.. In case of a rerun (K;.-N'"N)
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the number nK is defined only for an idendent variable
selection containing a specific set of K=N' IV's. It should
be noted that nK is equal for all those IVS's in a given
re~ressionp2roblem which contain the same OCIV's.

Evv, - The element in the (v+l)th row and the (v'+l)th column of the
artx~of_. enormal lequati.ons. Algebraically,

n
Ev= v 2 xvixv, 1. (v,vl' = 0,,2,...,K).

i=1

Evy - The element in the (v+l)th row and the (N+2)th column of the
summation matrix. (v = 0,1,...,N). Algebraically,

n
Evy = XVIYl.

i= 1

Ey7 - The total sum of squares of y, unadjusted for the mean.
Algebraically, n

EYY= Z y.
i=1

.,, is the lower right hand corner element of the summation
matrix.

GCIV - "Generated Concomitant Independent Variable." A GCIV is an
indeRendent variable which is generated from powers and/or
cross-products of Q•Y'.. A GCIV may also be called a "product
term."

Generated Independent Variable - See GCIV.

Hand Selected Rerun -The desired regression computations which are
performed for a model containing a specified subset of N1N
W0 4Re M.¥ULIbI, where the particular set of N' independent

variables is indicated on a punched card (G#rd.TM 10, see
Section V.2) in the eroblemudeck.

1. - The symbol used for the calculated i eltity matrix.

Identity Matrix - The (K+l) x (1+l) matrix, denoted by I., resulting
from multiplying the inverse of the Mtge34 o.2 e h Ug2 ..
eguations by the matrix A itself (in this sequence): I,a.k IA.
With K=N or KmNl'N, the identity matrix is defined for the
V&Lo..Co or for any Cgmeu, respectively. The identity matrLx
is computed in each run in order to check the accuracy of A-.
For details see Sectl~is VI.l.b and VI.2.a.(2).
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Independent Variable - One of the non-random variables, xv, in the
linear regression model, whose prediction capacity for the
depedeent variable, y, is being investigated by a regression
analysis. See also the definitions of OCIV and GCIV. For
further discussion see Sections IL.I and 11.2.

Independent Variable Selection - A subset of N' of the N i-n..endRe4ni t
variables originally input for a given reressjipon..roblem.
In the corresponding rerun_, the regression computations are
performed for the model containing these N' independent
variables. Independent variable selections may be done
"by hand" (see Section 11.1 and C1ardTye 10 in Chapter V)
c& automatically by IVOR and/or BIVOR. Not every independent
variable selection will necessarily lead to all desired
computations of a rerun.

Input Design Point - A designoin_ specified by its K observed or
measured coordinates in the K-dimensional space defined by the
K independent variables (both OCIV's and GCIV') for which an

observed or measured value of the d•QdPQ.LygtjgbjC exists.
With K=N or K=N'<N, an input design point is defined ior the
main,- run or for any rerun, respectively. The number of distinct
input design points for any run (with K independent variables)
is called nK. An input design point, as the name suggests, is
part of the data input for the program. However, the actual
input writing is done in MA-MRCA, only for the coordinates of
the OCIV's, whereas the coordinates of the GCIV's may auto-
matically be computed by the program.

iv. - The element in the (V+l)th row and (v'+l)th column of the
calculated identity matrix. (v,v'

TV - "Independent Variable" (see definition).

IVOR - "Independent Variable Ordering by Regression sums of squares."
&vOR is an optional subroutine which ranks the 1041ReUn410
Va[Ljokiot in descending order of imporLance according to their
contribution to the •g.6 § QA..gL.tqueut* See
Section 111.2 and Section VI.l.d for further explanation.

IVS -"Independent Variable Selection" (see definition).

K T ?he number of 1g9#2e.04 q•.vf[jekj~e in a given Egg. In the
VLoc.CVg& KuN; tu a CUtvo. K*N'<N, i.e., K equals the number of
the independent variables contained in the specific jLoftRtI3L
variable selection of the given rerun.

25



NWL REPORT NO. 2035

Leftmost Group - In 0.QR and 4;YQR, the first gro.: f jnderee
y#Kiable_, according to the inrut and generaition sequence, as
designated by Card Type 4 and Card Type 5, respectively.
(See Section V.2.y"The leftmost group ia IVOR is the first
group of independent variables to be ranked, whereas in BIVOR
the leftmost group is the last group of independent variables
to be ranked.

Leftmost IV - At a given st e of IVOR and/or BIVOR, the first (according
to the input and generation sequence) unranked inde2endeit
variable in a given group of independent variables.

Main Run - The regression computations which are performed for the
model containing all N indeeendent variables" originally input
for a given ei roblem.

Main Theorem - The theorem of multiple regressi.on on which all
hypothesi• testing and n are
based in DA-MR(.A. See Section III.1 for a full discussion.

Matrix of Lhe Normal Equations - The (K+l) x (K+I) symmetric matrix
denoted by A and formed by pre-multiplying the designimVrix, X,
by its transpose, X. For the full algebraic representation
of A see Section VI.3.a. With K=N or K=N'<N, the matrix of
the normal equations is defined for the w#u.Uruu or for any
rerun, respectively.

n - The number of data points input in one rer1ession.2roblm..
(n- 7000).

N - The nuinte of ,,d ct i. l , (Q•I': and QG'j:) contained
in the original regression model, i.e., in the model of the

N' - The number of indeeentenot.variabltes (OCV's and GCIV's) contained

in the model of a rerun.

ne- The number of i in a given [VU with 4
specific set of K ndindeeng var.qabies contained in the
regression model.

Non-Obvious Linear Dependency - A linear dependency among two or
amre row.s (columns) of the = tgL€ .Q.t, oL- qve;go§ when
the dependency is not obvious in the sense of the "obvious
linear dependency" (see defitlrtion).
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Non-Zero Error Perfect fit - A perfect fit in the case where the
number of data2oints, n, is larger than the number, nx, of

di.n.s oints" input: n>n,(=K+l). This term is
used only when a distinction from a zero error.eerfect fit
appears to be necessary.

Obvious Linear Dependency - A linear dependency among two or more
rows (columns) of the w4tg.9bo.Q L.•uLQi when the
cause for the dependency can immediately be recognized from
the number and/or constellation of the ni .distinct design
oqints. See Section VII.2.b. for more details.

OCIV - "Original Concomitant Independent Variable." An OCIV is an
•0•Daoneutya.gt§, which has physically been observed or
measured for each value of the eRdnt..ari.ble. (The
auxiliary variables used for the main effects in the multiple
regression approach to analysis of variance, see Section 11.3,
are also considered as OCIV's with respect to the method of
input into the program.) The term OCIV is used to differentiate
this type of independent variable from a %.. The adjective
"concovitant" stems from the concept of analysis of covariance
to which DA-MRCA can also be applied. To distinguish OCIY's
from GCIVs, the OCIV's are sometimes given the symbols zj,
J a 1,...,IR, where IR is the number of OCIV's.

Original Independent Variable - See OCIV.

Perfect Fit - The least squares fit in the case where the number of
SAinput, nt, equals the number of
Lgodp~g4o• y.Vt;#Lt in the model, plus 1: n=wK+l. See also
the definition for "zero error perfect fit" and for "non-zero
error perfect fit."

Powersum - A term sometimes used in the discussion of 'y:t where it
stands for the sum of the exponents of all OCIVs which are
contained in the GCIV. For example, the poversum of the GCIV
xlxqxý is 6.

Predicted Value (a Prediction) - The value (t)of the 4. ht y
as computed by evaluating the regression line (least squares
fit) for a given model at an jgg •..4i g.gj• or a kU,

Prediction Error - The deviation (A) of the input value (y) of the
4epud .e~o~tkiLe from the e(stlcu #to• Ct) of the dependent
variable for any • LgeteIt in a 8iven !V9.
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Prediction Power - A term used for a characteristic of an individual
independeent variable or a group of IV's with respect to the

d•R•u• 13ia. The prediction power is measured by the
additional regression sum of squares due to the individual
IV or the group of IV's. See also Chapter III.

Prediction Standard Deviation for Individual Observations - The
estimate (sý')) of the standard deviation of a prediction in
a given rui at a specified _design Roint. The prediction
standard deviation may be computed for a elcqted _input desig•

o.int or a •.nbi..sigU_.Q'_L and is used in the computation
of confidence limits for individual future observationi
(tolerance limits) of the dependent variable. (See Section VI.3.)

Prediction Standatd Deviation for the Prediction Line - The estimate
(s%•3) of the standard deviation for the prediction line
(r g ession equation) in a given rUn at a specified desi~gnoint_.
The prediction standard deviation for the prediction line may
be computed for a seAlec.ed_inut design o or a s~bQhi
tiga-pQiUL and is used for the computation of confidence

limits for the prediction line. (See Section Vi.3.)

Problem Deck - The deck of punched cards which constitute the program
input for one e §gQsi on_.rQbkle_. The problem deck consists of
cards of Types 1-10, see Section V.1.

Product Term - A synonym for GCIV.

Program Deck - The deck of punched cards containing the input-output
requirements (see Section VIII.3) and the program instructions
which are coded in FORTRAN IV for the IBM 7030 Computer. The
program deck and tbe 2roblem deck together constitute the total
card input for a regression •roblem.

Program Varieble - A program input parameter whose value is to be
specified by the program user for each regressioneroblern.

Ranking of Independent Variables - A process automatically executed
by IVOR or BIVOR, sometimes also referred to as "ordering" of
IV 's.

Regression Problem - The totality of all phases of the regression
analysis to be performed on one set of n d~a.a 2 oints as
specified by one 2roblem deck. A regression problem might
include, therefore, the main run and several rerunc, .VQR and
§.VQ., the Chi-square test on normality of residuals in all runs,
and other optional features.

Regression Sum of Squares Adjusted for the Mean ASSR. See definition
of ASSR.
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Rejected Run - A run which is not an accepted runq i.e., a run which
fails one of the 5 tests mentioned in the definition of an
accepted run.

Rerun - The desired regression computations which are performed for
a model containing a specified subset of N'(N independent
yriabz i.e., the computations performed for a specified
id••-.ndent-variable selecti•n A rerun can be specified
automatically or "by hand."

Restricted Admissibility - A term used in connection with the ranking
procedures IVOR and BIVOR. When ranking polynomial terms, or
auxiliary variables in non-orthogonal analysis of variance, it
is sometimes not advisable to consider all unranked _IY at
a given ste2 for ranking at that step. See Sections 11.3 and
VII.2.a for more details. Restricted admissibility can be
effected by the grouping of IV's in IVOR and BIVOR, see
Sections VI.l.d and VI.l.e.

Rightmost Group - In IVOR and BIVOR, the last group of independent
variables, according to the input and generation sequence, as
designated by_qcKd_Type 4 and Card Type 5, respectively. (See
Section V.2.) The rightmost group in IVOR is the last group
of independent variables to be ranked, whereas in BIVOR the
rightmost group is the first group of independent variables
to be ranked.

Rightmost IV - At a given step of IVOR and/or BIVOR, the last
(according to the input and generation sequence) unranked
indeeendent variable in a given group of independent variables.

Run - The totality of all desired phases of the regression analysis
to be performed on a model including a specified set of K
indeRenden•_yariables. With K=N or K=N'<N, the main run or any
rerun is included in this definition.

Selected Input Design Point - An inU.tign._oint selected by the
program user, for which the 2Kediction and the 2 rediction
standard deviation for the prediction line or for individual
observations are to be computed.

Significant Model - A regression model containing all iUd Ud
variables which contribute significantly to the LQ .g4QU
sum of s~q'qq due to the N independent variables in a 1q&eqsqion
problem~ as determined by reruns and the associated F ratios for
regression on deleted independent variables.

SSN-_N- See definition of "additional regression sum of squares."
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Step (of IVOR or BIVOR) - All calculations which lead to the
determination of an inde2endenttvariable to be included in or
to be deleted from the regression model in IVOR or BIVOR,
respectively.

Summation Matrix - The (N+2) x (N+2) symmetric matrix composed of the
(N+I) x (N+l) matrix _A[.of the normal equations of the main
rn, the constants, E, of the normal equations (v = 0,1,...,N),

and the sum of squares, E,,-, of the observations of the dependent
variable. For the algebraic representation of the summation
matrix see Section VI.3.a. The summation matrix is defined and
printed only for the main run.

Synthetic Design Point - A point in the K-dimensional space defined by
the K y~dnpe~ndenitarjables of a given KUU at which no value
of the dependent variable has been observed. With K=N or
KN'<N.,-a-synthetic design point is defined for the main run

or for any rerun, respectively. The K coordinates of a
synthetic design point are specified by the analyst. The
concept is employed in an optional subroutine which computes
pEredictions and redqiction standard deviationsfor_theprediction
line or for individual observations at specified synthetic design
points.

Total Regression Sum of Squares - A term sometimes used for the ASSR
value of the npain_run, i.e., ASSRN. (The main run contains the
"totality" of all N independentvariables originally considered
in the regression problem, hence this name for ASSRN.)

xvi - The symbol used for the numerical value (Qjordinae) of
independentv_.ariable xv for the ith data point. (i = 1,...,n;
Xi 1; = l,2,...,N in the main-run.)

Yl - The symbol used for the numerical value (gQordinat_) of the
defpendent, variable for the ith data point. (i = 1,...,n.)

Zero Error Perfect Fit - A •rjL.tf in the case where the number
of data.points, n, equals the number, nK, of distinct design.
Hoints input: n=nx(=K+l). The zero error perfect fit leaves
no degrees of freedom for the error variance, hence the name.
For further discussion see Section II.4.
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V. INPUT PREPARATION

In this chapter the preparation of input for the DA-MRCA
program is described. The various sections of the chapter give the
problem deck setup (Section V.1), the preparation of the problem deck
(Section V.2), and an example problem deck (Section V.3).

V.1 Problem Deck Setup

The problem deck for the general case is listed below by card
type. There are ten card types required for the general case, aud they
are designated in order of input and by card name. For specific cases
more than one punched card of a particular card type may be necessary.
The names of these card types are followed with an "(S)" to denote
the plural possibility. The explanation of each card type and the
instructions for the preparation of the problem deck are given iq the
next section.

CARD TYPE 1 - PROBLEM IDENTIFICATION CARD

CARD TYPE 2 - PROBLEM CONTROL CARD

CARD TYPE 3 - PRODUCT TERM DESCRIPTION CARD(S) (Optional)*

CARD TYPE 4 - IVOR CONTROL CARD (Optional)*

CARD TYPE 5 - BIVOR CONTROL CARD (Optional)*

CARD TYPE 6 - SELECTED INPUT DESIGN POINT CARD(S) (Optional)*

CARD TYPE 7 - SYNTHETIC DESIGN POINT CARD(S) (Optional)*

CARD TYPE 8 - DATA INPUT CARDS

CARD TYPE 9 - DATA TERMINATION CARD

CARD TYPE 10 - RERUN CARD(S) (Optional)*

NOTE: The cards whose names are marked with asterisks (*) control
optional features of the program and are omitted when the corresponding
options are not desired.

The problem deck, as listed above, is stacked behind the
program deck and constitutes the input for one regression problem. The
information contained on the DATA INPUT and DATA TERMINATION CARDS
(Card Types 8 and 9) may be placed on magnetic tape and the remainder
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of the problem deck prepared on cards. Problem decks for additional
regression problems are stacked consecutively behind the program deck.
Each problem deck may contain a different combination of the optional
cards. If a multiple problem case utilizes tape data of the types
previously specified, the tape data must be ordered in the same manner
as it would be presented as parts of the problem decks. Also, for the
case of tape input, the tape identification number must be punched on
the REEL CARD (third card of the program deck) starting in column 18.
No identification number is necessary for card input.

V.2 Preparation of Problem Deck

In this section, instructions for the preparation of the problem
deck are given. These instructions consist of: (a) the columns in
which the punched entries are to be made; (b) the input formats; (c)
the symbolic names of the program variables (when applicable); and (d)
explanations of the punched entries associated with each program variable.

To facilitate the reading of the input instructions for the
program user, who may be unfamiliar with the FORTRAN language, an
explanation of the various format specifications used to describe the
input-output data of DA-MRCA follows. Each format specification con-
tains a letter indicating the type of information which must be input;
also, the format specification contains integers which control the
number of input fields to be used, the number of columns in each field,
and thp regulation of the assumed decimal point if the decimal point
is not entered on the input card.

Format Specification A - This specification is of the form Aw,
where A indicates that the input can be alphanumeric (alphabetici.1 or
numerical) and the w indicates the number of columns in the field. By
writing a repetition number in front of the A, the same format sleci-
fication can be applied to several successive fields, e.g., 10A8 means
ten eight-column fields of alphanumeric information.

Format Specification I - This specification is of the forw 1w,
where the I indicates that the input must be an integer and the w
indicates the number of columns in the field. Decimal points are not
permitted and all input entries must be right adjusted, i.e., all
entries are punched in the column or columns furthermost to the right
within the field.

Format Specification X - This specification is of the form wX,
which means that a field of w columns is to be left blank.

Format Soeciftcation 2 (Exponental)g) - This specification is of
the form Ew.d, where the 9 indicates that the input value describes a
real number of the scientific notation, for example, a number of the
form 2.30x10 4 . (The actual FORTRAN representation is 2.306+04.) The
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w indicates the number of columns in the field. The d indicates the
number of digits to the right of the assumed decimal point if an actual
decimal point is not punched. A repetition number written in front of
the E applies the same format specification to a corresponding number
of successive fields. In DA-MRCA the E format is used for the input
of the two program variables TOLIM and TOLI2 (Card Type 2 of the problem
deck, see below) and, if specified, for the input of the coordinates of
the OCIV's, the dependent variable, and the coordinates of the synthetic
design points. The exponential part of the input number is generally
of the form E-ee; however, other forms, such as E±e, ±ee and ±e, are
permissible. Positive exponents can also be expressed as Ee or Eee.
Example: The input values +5879E+03, .5879E+3, +58.79+01 and 5879.-l
would all read as 587.9 if the input format specification E9.4 is used.

Format Specification F - This specification is of the form Fw.d,
where the F indicates that the input value describes a real number
without an exponent notation; the w indicates the number of columns
in the field and the d specifies the number of digits in the fractional
portion of the number. (The d-specification is overridden by a punched
decimal point.) A repetition number written in front of the F applies
the same format specification to a corresponding number of successive
fields. In MA-MRCA the F format is use4 if specified, for the input
of the coordinates of the OCIV's, the dependent variable, and the
coordinates of the synthetic design points. Example: The input
value of 16897 would be read as 1689.7 if the input format specifi-
cation of F5.1 is used.

The instructions for the input preparation follow below.

CARD TYPE I - PROBLEM IDENTIFICATION CARD

Coi .an Format Proaram Variable Explanation

1-80 l(A8 PGLB Regression Problem Identification Card.
(Any columns may be used.)

CARD TYPE 2 , PROBLEM COROL CARD

Coluum Format Proaram Variable Explanation

1-2 12 IR Enter the number of original concomitant
independent variables (OCIV's) whose
coordinates will be input on DATA INPUT
CARDS (Card Type 8).

3-4 12 IS Enter the number of generated concomitant
independent variables (GCIV's) to be
computed from the ZR OCIV's (see Card
Type 3). IR + IS = N -r 50.
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CARD TYPE 2 (Cont'd)

Column Format Program Variable Explanation

5-7 13 NR Enter the number of hand selected reruns
(see Card Type 10). Punch a 0 if only
automatic reruns are desired as selected
by IVOR and/or BIVOR. 0 -5 NR • 999.

8-10 13 MVP Enter the number of synthetic design
points to be read from Card Type 7 -
SYNTHETIC DESIGN POINT CARD(S) - for
which the computations indicated in
column 14 of the present card will be
performed. 0 :I MVP •- 999.

11-13 13 NDR Enter the number of selected input
design points for which the computations
indicated in column 14 will be performed.
The selected input design points are
denoted on Card Type 6 - SELECTED INPUT
DESIGN POINT CARD(S). 0 - NDR - 999.

14 Il MVPL 0 = Predictions and prediction standard
deviations for individual observations
will be computed for selected input
design points and/or synthetic design
points for the main run and each hand
selected rerun. (The standard deviations
can be used to construct tolerance limits
for individual observations, see Section
VI.3.b.(2) .)

1 = Predictions and prediction standard
deviations for the prediction line will
be computed for selected input design
points and/or synthetic design points
for the main run and each hand selected
rerun. (The standard deviations can be
used to construct confidence limits for
ýhe prediction line, see Section VI.3.b.(2).)

15 Il NPE 0 & Predictions and prediction errors
will not be printed and the test for
normality of the prediction errors will
not be performed for hand selected reruns
and IVOR and/or BIVOR reruns.
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CARD TYPE 2 (Cont'd)

Column Format Program Variable Explanation

1 = Predictions and prediction errors
will be printed and the test for normality
of the prediction errors will be performed
for hand selected reruns and IVOR and/or
BIVOR reruns.

16 Il NDPO 0 = The coordinates of the data points
will be printed (in the dati matrix)
in the format 9F13.6 and the predictions
and the prediction errors will be printed
in the format 2F15.6.

I = The coordinates of the dlata points
will be printed (in the data matrix)
in the format 7E17.8 and the predictions
and the prediction errors will be printed
in the format 2E15.6.

2 = The coordinates of the data points
will not be printed but the predictions
and the prediction errors will be printed
in the format 2 F!5. 6 .

17 Il TAPE 0 = The coordinates of the OCIV's and
the dependent variable and also the data
termination indicator will be input on
cards.

1 = The above will be input on magnetic
tape. (The tape identification number
must be entered on the REEL CARD of the
program deck starting in column 18.)

18 Il IVORGO 0 = IVOR and BIVOR will not be used.
1 = IVOR will be used.
2 = BIVOR will be used.
3 = IVOR and BIVOR will be used.

19-20 12 NFD Enter the number of data fields to be
read from each DATA INPUT CARD (input
record, if tape is used) as indicated
by the input reading format (see columns
41-80). If no entry is given or if a
zero is entered, seven data fields will
be assumed.
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CARD TYPE 2 (Cont'd)

Column Format Program Variable Explanation

21 II IBID 0 = In BIVOR, the identity matrix will
be computed for all reruns and accuracy
checks will be performed on all identity
matrices (see columns 23-40).

1 = In BIVOR, the identity computations
and accuracy checks will be terminated
with the first rerun in which an identity
matrix has been computed which satisfies
the accuracy criteria imposed by the
value of I(M) (see columns 23-31).
This option is a time-saving device
which may be advantageously applied in
cases with a large number of independent
variables. See also Section VI.2.d.,
paragraph C.

22 ---- Leave blank.

23-31 E9.5 TOLIM Enter the value of I(1). This value
will be used as the accuracy criterion
for controlling the printout of the
identity matrix for the main run and
each rerun. If I iv, -L 1 2 I(1), where
L=l when v=v' and L=0 when vivt, the
identity matrix will be printed. For
further discussion and for the choice
of I(1) see Section VI.l.b. Notice that,
according to the format specification,
this entry does not have to be right
adjusLed. The same applies to the next
two entries (TOLI2 and FORM).

32-40 E9.5 TOLI2 Enter the value of 1(2), where I(2)z 1(1).
1(2) will be used as the accuracy criterion
which determines acceptance or rejection
of the regression computations for the
main run or any rerun. It itvv-l I M 1(2),
the run will be rejected. (NOTS: 1(2)
applies only to the elements of the main
diagonal of the identity matrix.) For
further discussion and for the choice
of 1(2) see Section VI.I.b.
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CARD TYPE 2 (Cont'd)

Column Format Program Variable Explanation

41-80 5A8 FORIM Enter the format specifications by
which each Card Type 8 - DATA INPUT
CARD (data input record, if tape input
is used) is to be read. These format
specifications do not include the first

two columns of each DATA INPUT CARD
which must be left blank. All coordinates
of a data point may be read in the same
manner by using a simple format speci-
fication such as 7V10.4 (see Card Type
8). Eowever, if necessary or convenient,
more complex format specifications may
be entered whereby the various

coordinatens of a data point may occupy
a varying number of columns. For example,

if a record format of F12.5, 5F10.0,
F8.4 were entered, the dependent variable,
the first five OCIV's, and the sixth OCIV
would constitute the input record and
will be read by these formats, respectively.
(NO1: The comas must be entered to
separate the individual formats.) If,
in this example, more than six OCIV's
were required to represent a data point,
the additional OCIV's would constitute
another input record and would be read
by the same format specifications which
means, the seventh OCIV would be read
by F12.5, the eighth, ninth, tenth,
eleventh, and twelfth OCIV's would be
read by 5110.0 and the thirteenth OCIV
by 78.4, etc.

If ID a 0 (colums 19-20) the format
7W10.4 is assumed and no entry is
necessary in colums 41-80.

Cn TinNI 3 " PUIM T 5 33SCIlTU CRMtS) n(Optional)

This card is used to input the description of the IS product
term (OCIM's) which are to be generated from the values of the IR

original concomitant independent variables (OCCV '). (See columa 1-4
of Card Type 2.) Tw QcU'Vs are powers sad/or cross-products of the

OCCV's and wre generated "s additional Independent variables. A

product term descriptLon designates the imdepedet variables (OCCV's
or OCIV's) which are to be used as mltiplicative factors in the

3O
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CARD TYPE 3 (Cont'd)

generation of a GCIV. Any OCIV may be used as a factor in the
generation of any GCIV and any previously generated GCIV may be used
as a factor in the generation of a subsequent GCIV. A product term
description consists of the subscripts of the independent variables
which are to be used as factors in generating the GCIV. The following
example case (IR = 2, IS = 7, N = 9) illustrates the procedure for
writing product term descriptions. (This is the case of the example
problem discussed in Sections V.3 and VI.5.)

IV OCIV GCIV Product Term Description

xI z1 Not applicable

x Z2  Not applicable

X3 zIz 2  1 2

2X4  zI I

x5 z. 2 2

22
xe zlz• 1 2 or 1 3 or 2 4

X7, ~z~• 1 2 2 or 1.5 or 2 3

Xe I1 or 1 4

3
Xe 2 2 2 or 2 5

As many as ten factors may be designated for each product
term description and four product term descriptions may be punched
on each card of this Card Type. I, no product term. are to be
aenerated (IS - 0). this card must be omitted from the input deck.

Column P roo&,at Variable Explanation

The description of the first product
term occupying up to 20 columns is
entered .n columns 1-20 using two
column fields to designate the factors:

1-2 12 En(t,) Baiter the subscript of the independet
variable to be used as the first factor
In the product term.
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CARD TYPE 3 (Cont'd)

Column Format Program Variable Explanation

3-4 12 1N(1,2) Enter the subscript of the independent
variable to be used as the second factor
in the product term.

19-20 12 IN(i,10) Enter the subscript of the independent
variable to be used as the tenth factor
in the product term. (The description
of the product term zjz 2 would be a 1
in column 2 and a 2 in column 4.)

The descriptions of the second, third,
and fourth product terms occupying up
to 20 columns each are entered in
columns 21-40, 41-60 and 61-80,
respectively, in the same manner as the
first product term description.

If more than four product terms are desi:ed (IS > 4), cards in
the same format are added as needed.

CARD TYPZ 4 - IVOR CONTROL CARD (Otional)

The information which is input on this card determines the
conditions under which IVOR auiil consider the indepen~dent variables
for ranking. The independent ,-rlables can be divided into groups
of consecutive independent variables, according to the sequence of
input and generation, whereupon IVOR ranks the variables wirhLn these
groups starting with the first group (see IVOR explsnation in Section
VI.l.d). The input parameters of IVOR are the number of variables to
be ordered, the number of groups into which the variables are to be
divided and the number of variables in each group. If MVOO - I or
3 (se. colum 18, Card vyge 2). this card must be included in the
igast deck. If nVOMO = 0 or 2. this card mast be omitted from the
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CARD TYPE 4 (Cont'd)

Column Format Program Variable Ex~lanation

1-2 12 IQ Enter the number of independent
variables to be ordered by IVOR. If
all N independent variables are to be
ordered, enter 0 or leave blank. Other-
wise

M1
IQ 5-: Z N

j=l
where My is the number of groups and
N3 is the number of independent
variables in the jth group.

3-5 13 MI Enter the number (MI) of groups into
which the set of independent variables
is to be divided for ordering within
groups. I - M, < 25.

6-8 13 NJ(1) Ealtar the number (NI) of independent
variables in the first group.

9-11 13 NJ(2) Enter the number (N2 ) of independent
variables in the second group.

78-80 13 NJ(25) Enter the number (N25 ) of independent
variables in the twenty-fifth group
(if MN = 25).

In order to consider all independent variables as one group,
put MI = M, = 1 and NJ(1) = N, = IR + IS = N. If only a subset of
the N independent variables is to be considered, specify this by

M,
E N<N;

j=l

however, the independent variables excluded will be the rightmost
independent variables according to the input and generation sequence.
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CARD TYPE 5 - BIVOR CONTROL CARD (Optional)

The information which is input on this card indicates the
conditions under which BIVOR will consider the independent variables
for ranking. As for IVOR, the independent variables can be divided
into groups of consecutive independent variables, according to the
sequence of input and generation. (The number of independent
variables in the respective groups of IVOR and BIVOR may be entirely
different.) BIVOR will do the ordering within each group starting with
the last group (see BIVOR explanation in Section VI.l.e). If IVORGO =
2 or 3 (see column 18, Card Type 2), this card must be included in
the input deck. If IVORGO = 0 or 1. this card must be omitted from
the input deck.

Column Format Program Variable Explanation

1-2 12 MB Enter the number (Me) of groups into
which the independent variables are
to be divided for ordering within
groups. I Me !5 25.

3-5 13 LOT(l) Enter the number (NI) of independent
variables in the first group, which
will be the last group of IV's ordered.
(N is the number of independent
variables in the qth group.)

6-8 13 LOT(2) Enter the number (ND) of independent
variables in the second group, which
will be the next to last group of- IV's

ordered.

75-77 13 LOT(25) Enter the number (N25 ) of independent
variables in the twenty-fifth group
(if MH = 25) which will be the first
group of IV's ordered.

In order to consider all independent variables as one group,
put MB = Me = 1 and LOT(l) = N, = IR + IS = N. If only a subset of
the N independent variables is to be considered, specify this by

Me
Z Nq<N;

q=l
however, the independent variables excluded will be the rightmost
independent variables according to the input and generation sequence.
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CARD TYPE 5 (Cont'd)

NOTE: The program variable "LOT" is also used in connection
with Card Type 10 - RERUN CARD - where it represents a different input
parameter. The reader who is interested in more details about the
variable LOT is referred to Chapter VIII.

CARD TYPE 6 - SELECTED INPUT DESIGN POINT CARD(S) (Optional)

The input design points for which the predictions and prediction
standard deviations will be computed (see column 14, Card Type 2) are
indicated on this card; these design points are denoted as selected
input design points. Entries made on this card refer to the design
points according to their order of input, i.e., if the computations
are desired for the design point that was input first, a I is entered
on this card, if the computations are desired for the design point
that was input third, a 3 is entered on this card, etc. The computations
are performed for the main run and all hand selected reruns. There
must be exactly NDR entries (see columns 11-13, Card Type 2) on this
card and they must be in numerically ascending order. If NDR = 0,
this card must be omitted frow the input deck. NDR •5 999.

Column Format Program Variable Explanation

1-4 14 IKEEPR(1) Enter the number corresponding to the
input order of the first selected
input design point.

5-8 14 IKEEPR(2) Enter the number corresponding to the
input order of the second selected
input design point.

77-80 I' IKEEPR(20) Enter the number corresponding to the
input order of the twentieth selected
input design point.

IKEEPR(i) < IKEEPR(i + 1) for i = 1,2,...,(NDR-l). Additional
cards are used if NDR > 20 and are continued in the same format.
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CARD TYPE 7 - SYNTHETIC DESIGN POINT CARD(S) (Optional)

The synthetic design points for which the predictions and the
prediction standard deviations (see column 14, Card Type 2) will be
computed are specified on this card. A synthetic design point is
specified by coordinates of the IR OCIV's and the IS GCIV's at which
no actual experimentation was performed or no observation was made.
(The coordinares of the GCIV's are not input on this card because
they are generated from the coordinates of the OCIV's by the instructions
given on Card Type 3.) By employing the feature of synthetic design
points it is possible to obtain predictions and prediction standard
deviations for arbitrarily chosen values of the independent variables.
For example, the feature can advantageously be used for interpolation.
The computations are performed for the main run and all hand selected
reruns. The number of synthetic design points input must equal MVP
(see columns 8-10, Card Type 2). The synthetic coordinates of the IR
OCIV's are input with the same format that is used for the DATA IIiPUT
CARDS, which is the format entered in columns 41 80 of Card Type 2,
ignoring columns I and 2; however, the first field of the format
(starting with column 3 of the first card of Card Type 7) is left
blank since it corresponds to the first field of the DATA INPUT CARDS
which is reserved for observations of the dependent variable. Anything
punched in this field will be ignored by the program.

An explanation of the preparation of this control card is
given below for the assumed format of 7FM0.4. If MVP = 0. this card
must be omitted from the input deck. MVP •- 999.

Column Format Explanation

1-2 2X Leave blank.

3-12 lOX Leave blank.

13-22 F10.4 Enter "synthetic" z11, the value-of the first OCIV
for the first synthetic design point.

23-32 F10.4 Enter "synthetic" z2 1 , the value of the second OCIV
for the first synthetic design point.

63-72 Fl0.4 Enter "synthetic" z6 1 , the value of the sixth OCIV
for the first synthetic design point.

Under the assumed format, 7F10.4, which is used here as an
example, and if 6 < IR • 13, a second card would be needed to complete
the representation of the first synthetic design point. This second
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CARD TYPE 7 (Cont'd)

card would be read with the same format (7FI0.4) with the exception
that columns 3-12 are used for the synthetic value of the seventh
OCIV (syn z71). If IR > 13, additional cards would be necessary in
order to completely represent the first synthetic design point, and

the same format would be applied. Succeeding synthetic design points
are input on successive cards in a similar manner.

CARD TYPE 8 - DATA INPUT CARDS

These cards are used to input the observed coordinates,
(y; z1 , z2 , ... , zrR)i, of the n data points, where IR is the number
of OCIV's and i = 1,2,...,n. The numerical values are entered on the
cards according to the format which has been specified in columns
41-80 of Card Type 2, ignoring columns I and 2. If more than one card
is required to represent each data point, the additional cards (con-
taining OCIV's only) will be read by the same format specification.
An explanation of the preparation of these cards is given below for

the assumed format 7FI0.4 for data input.

Column Format Explanation

1-2 2X Leave blank.

3-12 F10.4 Enter yl, the observed coordinate of the dependent
variable for the first data point.

13-22 F10.4 Enter zmi, the observed coordinate of che first OCIV
for the first data point.

23-32 FlO.4 Enter z2 1 , the observed coordinate of the second OCIV
for the first data point.

63-72 F10.4 Enter z6 1 , the observed coordinate of the sixth OCIV
for the first data point.

Under the assumed format, 7F10.4, which is used here as an

example, and if 6 • IR !ý 13, a second card would be needed to complete
the representation of the first data point. This second card would be
read with the same format (7F10.4) with the exception that columns
3-12 are used for z-71 , the observed coordinate of the seventh OCIV of
the first data point. If IR Ž 13, additional cards would be necessary
in order to completely represent the first data point, and the additional
cards would be written in the same format as the second card. The
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CARD TYPE 8 (Cont'd)

r:oordinates (y; z1, z2, ... , zXR)j of the succeeding data points,
where i = 2,3,...,n, are input on successive cards in a similar manner.
The GC1V coordinates are generated using the OCIV coordinates which
are input on these cards. The DATA INPUT CARDS and the SYNTHETIC
DESIGN POINT CARD(S) are identical in format; however, the first
field of the DATA INPUT CARDS contains the coordinates of the
dependent variable and the first field of the SYNTHETIC DESIGN POINT
CARD(S) is left blank. Thke program limitation on the number, n, of
data points is: n < 7000.

CARD TYPE 9 - DATA TERMINATION CARD

Column Format Program Variable Explanation

1-2 12 Ml Enter any non-zero value.

If the information on Card Type 8 is on tape, the information
on Card Type 9 must be on tape and must have a record length given by
the format in columns 41-80 of Card Type 2 (or the assumed format,
IFIO.4) plus 2 columns.

CARD TYPE 10 - RERUN CARD(S) (Optional)

This control card provides the capability of deleting any
ombination of independent variables (OCIV's or GCIV's) from the
-iginal model and, thereby, repeating the regression computations

for a specified independent variable selection of N' < N IV's. If
itl desired phases are executed, this repetition is called a rerun.

•rrun card must be included in the input deck for each rerun that
iL desired and, therefore, NR (see columns 5-7, Card Type 2) rerun

:•.ds are needed. Each column of a rerun card represents an
Laaependent variable (OCIV or GGIV) in the original model for the main
A•Lt. If a I is entered in the column, the corresponding independent
,ariable is excluded from the model. If a 0 is entered in the column,
the corresponding independent variable is included in the model. This
,ard must be omitted from the input deck if NR = 0. NR < 999.

*.,inimu Format Program Variable Explanation

I II Lot (1) Enter a zero; this column represents
the constant which must be retained
in the regression model for all runs.
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CARD TYPE 10 (Cont'd)

Column Format Program Variable Explanation

2 II Lot (2) This column represents the first
independent variable; enter a zero if
it is to be retained in the model or
enter a one if it is to be deleted from
the model.

3 Il Lot (3) This column represents the second
independent variable; enter a zero if it
is to be retained in the model or enter
a one if it is to be deleted from the
model.

51 II Lot (51) This column represents the fiftieth (if N=50)
independent variable; enter a zero if
it is to be retained in the model or
enter a one if it is to be deleted from
the model.

Subsequent rerun cards are written in the same format.

V.3 Example Problem Deck

A card layout of the problem deck for the example problem
which is discussed in Section VI.5 is given on the following pdge.
An explanation for each card of the problem deck is also provided.

4
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Card Type Column Explanation

1 1-80 Identification of the problem.

2 1-2 IR=2; two OCIV's (z, and z2 ) are input.

3-4 IS=7; seven GCIV's are to be generated.

5-7 NR=l; one hand selected rerun is to be executed.

8-10 MVP=3; three synthetic design points are to bo input.

11-13 NDR=2; two selected input design points will be
specified.

14 MVPL=l; predictions and prediction standard
deviations for the prediction line will be computed
for the 3 synthetic design points and the 2 selected
input design points for the main run and the hand
selected rerun.

15 NPE=l; prediction and prediction errors will be
comlputed and printed and the Chi-square test for
normality of the prediction errors will be
performed for all reruns.

16 NDPO=I; the coordinates of the data points will be
printed in the format 7E17.8 and the predictions
and the prediction errors will be printed in the
format 2E15.6.

17 TAPE=O; DATA INPUT and DATA TERMINATION are on

cards.

18 IVORGO=3; both IVOR and BIVOR will be used.

.9-20 NFD=3; there are three data fields on each DATA
INPUT CARD.

21 IBID=0; the identity matrices will be computed for
all BIVOR rcruns and the accuracy checks will be
performed o- all identity matrices from BIVOR reruns.

23-31 I(l)=.IE-3L.0O01 = accuracy criterion for printout
of identity matrices.

32-40 I(2)=.15E-l=.0l5 = accuracy criterion for rejection/
acceptance of runs.

41-80 FORM=3FI0.0; input format by which each DATA INPUT
CARD is to be read is three ten-column fields in
the F format starting with column 3.
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Card e Column Explanation

3 1-20 IN(ll)=I, IN(1,2)=2; the first GCIV (third
(first card) independent variable) is zz 2 = x,-.

21-40 IN(2,l)=I, IN(2,2)=I; the second GCIV (fourth
independent variable) is zIz1 = = x4 .

41-60 IN(3,1)=2, IN(3,2)=2; the third GCIV (fifth
independent variable) is z2z2 = z =xs.

61-80 IN(4,1)=I, IN(4,2)=1, IN(4,3)=2; the fourth
GCIV (sixth independent variable) is
ZlZ I Z2 = Z2Z 2 = X-.

3 1-20 IN(5,1)=I, IN(5,2)=2, IN(5,3)=2; the fifth
(second card) GCIV (seventh independent variable) is

Z1Z2 Z2 = zIz2 = x-.

21-40 IN(6,1)=I, IN(6,2)=l, IN(6,3)=l; the sixth
GCIV (eighth independent variable) is

3
Z 1Z 1 =Z = XA.

41-60 IN(7,1)=2, IN(7,2)=2, IN(7,3)=2; the seventh
GCIV (ninth independent variable) is

3z2 z2zz = Z2 = xa.

4 1-2 IQ=4; IVOR will terminate after four indepen'ent
variables have been ordered.

3-5 MI=2; the independent variables are to be divided
into two groups for ordering by IVOR.

6-8 NJ(W)OW; the first two independent variables
(x 1 ,x 2 ) are to be considered as the first group.

9-11 NJ(2)=7; the next seven independent variables
(x3 ,x4 ,xý ,x 0,xV ,xO ,xV) are to be considered as
the second group.

5 1-2 MB=3; the independent variables are to be divided
into three groups for ordering by BIVOR.

3-5 LOT(M)=2; the first two independent variables
(xl,xa) are to be considered as the first group
in BIVOR.
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Card Type Column Explanation

5 6-8 LOT(2)=3; the next three independent variables
(X3 ,X4,xS) are to be considered as the second
group.

9-11 LOT(3)=4; the next four independent variables
(x 6 ,X7,xs,x 9 ) are to be considered as the third
group.

6 1-4 IIEPR(1)=4; the fourth input design point
(according to order of input) is to be used as
a selected input design point for the calculations
specified in column 14, Card Type 2.

5-8 I]KEEPR(2)=13; the thirteenth input design poipr
(according to order of input) is to be used as a
selected input design point for the calculaticns
specified in column 14, Card Type 2.

7 13-22 The value of the first OCIV for the first
(first card) synthetic design point is entered (syn zlI = .240).

23-32 The value of the second OCIV for the first
synthetic design point is entered (syn Z21 = 350).

7 13-22 The value of the first OCIV for the second
(second card) synthetic design point is entered (syn zQ = .250).

23-32 The value of the sectrnd OCIV for the second
synthetic design point is entered (syn z4 a 400)

7 13-22 The value of the first 0CIV. for the third
(third card) synthetic design point is entered (syn z, t .260).

23-32 The value of the second OCIV for the third
synthetic design point is entered (syn z.,. = 450).

8 3-12 The observed coordinate of the dependent variable
(first card) for the first data point is entered (y, 927).

13-2Z The observed coordinate of the first OCIV for the
first data point is entered (zjj i .253).

23-32 The observed coordinate of the second OCIV for the
first data point is entered (z;,s 31i).

8 These cards are written in the same format as the
(second card thru preceding card.
twentieth card)
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Card Type Colura Explanation

9 1-2 A non-zero value is entered for the purpose of
indicating termination of data.

10 1 Lot (1)=O; the constant term must always be
retained in the model.

2 Lot (2)=O; the first independent variable (xj)
is included in the model for this rerun.

3 Lot (3)=l; the second independent variable (xe)
is excluded from the model for this rerun.

4 Lot (4)=l; the third independent variable (x:.) is
excluded from the model for this rerun.

5 Lot (5)=0; the fourth independent variable (x.;)
is included in the model for this rerun.

6 Lot (6)=I; the fifth independent variable (x..)

is excluded from the model for this rerun.

7 Lot (7)=I; the sixth independent variable (x,)
is excluded from the model for this rerun.

8 Lot (8)=4; the seventh independent variable (x-)
is excluded from the model for this rerun.

9 Lot (9)u0; the e'ghth independent variable (xa)
is included in the model for this rerun.

10 Lot (10)=l; the ninth Independent variable (xo)
is excluded from the model for this rerun.
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Vi. COMPUTATION AND PRINTOUT

VI.l Some Basic Computational Features

In this section some basic computational features will be

discussed which merit being set aside from the description of the
computational details given in Section VI.2. The discussion of
these features may also provide a better understanding of the
DA-MRCA program as a whole.

VI.l.a Matrix Inversion

The inverse of the matrix of the normal equations and
the solution vector are obtained, in any given run, by the Gaussian
elimination method with the largest element as pivot. In the following,
the algorithm is outlined for the interested reader who prefers a
discussion in general algebraic terms rather than interpreting those
parts of the program listing (Section VIII.4) which represent this
inversion procedure. The proof for the validity of the algorithm is
omitted since it appears to be beyond the scope and intent of the
present report. A proof is given, for example, in Cohen L1959]. The
inversion subroutine was adopted without change from the nucleus
program (TV-MRCA) of DA-MRCA.

The algorithm is described in terms of the main run,
that is, as applied to the (Nil) x (N+I) matrix of the normal
equations augmented by the right-hand vector of the N+1 elements Evy.
However, the algorithm is identically applied also to all reruns with
N'<N independent variables contained in the model.

The procedure (as discussed for the main run) consists
of N+1 cycles, after each of which all (N+I)(N+2) elements involved
will have changed. The elements of the matrix of the ith cycle are
denoted by the superscript i attached to the elements Evv, and Evy:
'E,,,, 'E,, By definition, i=O indicates the original elemen,

•EvV, = Ev*,, °0 Evy = Evy; v,v' = 0,1,...,N. At the end of cycle
number N+I, the elements equal those of the inverse matrix A-' and
of the regression coefficients, respectively: 1'Evv, = cvv, and
"N+lEvy = bv. The algorithm is as follows:

1st Cycle (i=l)

(1) The square matrix A of the normal equations with rank
N+l is searched for the element with largest absolute value, which is
found on the main diagonal. This element is called the pivot element
and is denoted by OEE . Row p is called the pivot row; this row cannot
be used as the pivot row in any one of the remaining N cycles.

All subsequent steps (Nos. (2) - (5)) of the 1st cycle
are exactly like steps (2) - (5) of the ith cycle as described below.
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jth Cycle

(1) The square matrix of rank (N+l)-(i-1) = N+2-i,
obtained from the matrix at the end of cycle Nou i-I by deleting all
i-i rows and columns corresponding to the pivot elements used previously,
is searched for the element with largest absolute value, which is found
on the main diagonal, This element is the pivot element of the ith cycle
and is denoted by '-1 E The corresponding row cannot be used as theapp'

pivot row in any one of the remaining N+l-i cycles.

(2)

'EPV#= "DV for v' =

with
= 1EPv, if u' p

'-IE*pv,

if V'=p

(3)
1-1E

(4) 'Evv,= i-'ErVV, '~~E

Vppfor {\,= = 0,1,°,p-l,p+l,o00 °,N0,, ,

for

with _lvv =v if v'#p

if V' =p

(5)
1EV7 I =

( ) IE V y = 1- 'E v y - , ' -'E v p 'E py

for v = 0,l,...,p-lp+l,...N.

(N+l)th Cycle

The computations are as in (1) - (5) of the ith cycle
with i=N+l. The results are:
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+cv } for v,,.' = 0,1,2,...,N.
N+lEV~

The determinant, A, of the matrix A equals the product of the N+1
pivot elements of the N+1 cycles:

N

AT Epp
i=0

VIAl.b. Checks on the Accuracy of the Ihverse Matrix

VI.,tb •L Introductory Remarks

The accuracy of the inverse, A-', of the matrix of
the normal equations of a given run with K(-•N) independent variables,
which is obtained in DA-MRCA by the modified Gaussian elimination
process as described in the previous section, depends upon the natural
limitation of the computer accuracy. For example, in the IBM 7030, 13
digit accuracy is present when single precision is used as in DA-MRCAo
The limited computer accuracy causes the propagation of errors. Some
contributing factors to the amount of these errors, as contained in the
elements of A71, are:

(a) the rank of the matrix A;

(b) the underlying type of regression problem (for
example, polynomial regression vs. ordinary linear regression with
original independenc variables only);

(c) the ranges of the values of the independent
variables (for example, 1xv 1> 1 vs.. ixv Ik 1);

(d) the relative position of the nK distinct input
design points.

In general (an exception is discussed in Section
VI1.b.b(3)), the only practical way to check on the amount of the
propagated errors contained in the elements of the inverse A71 is
to calculate the product

I, = A'IA, (VI-l)

that is, to form a "calculated identity matrix", I., and to compare
it with the exact identity (or unit) matrix, I. This is done in the
present program for each run (in BIVOR, however, only when specified,
see column 21 of Card Type 2, Section V.2). The checks on I., as
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described further below, not only serve to reject unacceptably
inaccurate inverses but also to identify cases in which the matrix
of the normal equations contains "obvious" or "non-obvious" linear
dependencies. These topics are further discussed, along with corrective
measures to be taken in such rejection cases, in Chapter VII,

When I. is calculated according to (VI-l), it is

possible that the errors contained in the elements of A are drastically
magnified such that the off-diagonal elements of I. are far from zero.
This may even be true under the (unrealistic) assumption that the
elements of A-1 are obtained without computational errors, except for
the truncation errors due to the natural limitation of the computer
accuracy, ioe., 13-digit accuracy as present on the IBM 7030 with
single precision. In fact, the'derivations in Section VI~lob,(2)
below are based on this assumption that the elements of A-' are free
from error, except truncation error. The main diagonal elements of
I, (which should all be 1) are the only elements of I. which will
never be affected by this type of magnifying process. Therefore, the
accuracy check on I, is restricted, in DA-MRCA, to the main diagonal.
If the largest deviation from I in the main diagonal of I, exceeds the
input value of [(2) specified by the program user, the inverse is
automatically rejected by the program as being unacceptably inaccurate0

(The deviations from zero of the off-diagonal elements of I. are also

checked, but only for the purpose of deciding whether or not the
matrix I. is to be printed for visual inspection.)

The justification for the above statements is given
in the next section and is based on the regression model (I-1) as
used in DA-MRCA. If the model

N
y = + 5 (xv - iv) + e, (VI-2)

v=l

iJe., the "adjusted" regression model, were used, the elements (fvvi,
say) of the matrix of the normal equations would also be adjusted for
the averages, eogo, 1ve = Evve - EvoEov' , and a different situation

(not necessarily an improved one) would arise with respect to the error
magnifying process when calculating an identity matrix, See the
remarks in Section VI1o2.a concerning the effects of the transformation
(VII-1), v = x-Z

Rx

VI~lobo(2) Justification for the Rejection Criterion

In this section a justification is given for the
rejection criterion (as described before) which involves only the main
diagonal elements of I. = A-'A, The justification is given under the
simplifying assumption that the elements, cvvt , of A- are free from
error, except truncation error. It will be shown that even these
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truncation errors in the cvv, are sometimes sufficient to cause large
deviations from zero in the off-diagonal elements of I.. Naturally,
these deviations are even larger when the Cvv' also contain propagated
errors, as is almost always the case in reality.

All errors will be derived in terms of their
approximate "orders of magnitude." For this purpose the following
definition is introduced:

Definition: The "order of magnitude" of a number, z, is
defined, for the derivations of this section, to be the
nearest power of ten to which z can be rounded. The symbol
"•" is used to indicate that the number or algebraic term
located to the right of the symbol is the order of magnitude
of the term located to the left of the symbol. The symbol
"J' is also applied to matrices, and its meaning shall then
be that the matrix to the right of the symbol is the matrix
of the orders of magnitude of the corresponding elements of
the matrix to the left of the svmbol.

For example, for z = 677232:

z = 677232 .7 x 10 ý I x 108 = 106

Another example is:

z = -0.0434 -0.4 x 10- -o1 x 10l -l0-.

The approximate orders of magnitude of the truncation
errors contained in the elements of A-' and of the errors in the elements
of I, will be derived for the case of the main run, that is, for A being
of rank (N+l) x (N+1). Naturally, the results are similarly valid for
the matrix A of any rerun with N'<N independent variables.

n
With Evve = 7 xvjxv,' , the matrix A of the normal

equations for the main runis: i=1

EO0 , E0 1 E02  EOVj .. ON

E1 o E1 1  E1 2 " Ely, v ElN

E20  E:1 E2•2 E*v' EyN

A*.. (VI-3)
Eve Ev EV " Evv, EVN

* . 4. • 0

ENO EN1  EN " ENV# "" ENN
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The elements of A-' will be expressed folluw.ng Cramer's Rule. This
may be done because the specific characteristics of the inversion
process of DA-MRCA and the associated error propagation are unimportant
for the purpose of the present derivation. To repeat, the only
purpose is to show the magnifying process of the truncation errors
contained in A-' which can take place when I. = A- 1 A is formed.

To arrive at the justification desired, it will
further be necessary to make use of a known result from the theory
of determinants: The determinant of order k,

d11  d1 2  - dlk

d2 l d2 2  " d2k

dkl dk2 ... k

can bc 2xpressed in the following form:

k 1
D -- (± d1 adasd 3y . i $), (VI-4)

where the summation extends over all k! members which result from the
k! possible permutations of the subscripts *000-I6 '.. y., each subscript
taking one of the values 1, 2, 3, .. e, k.

Applying (VI-4) to the elements cvv, of A71 and
recalling that Evve -K* v, one has from (VI-3) according to Cramer's
Rule:

cvv.-I 1':'(0olot0sit,9 "2tv". ~ ~~v~i(,•t, "

with (VI-5)

where
(N+01)6 -Oct(A) E (:d oo I 02 119 t. -6" 3t , t oo "'" V 066 . k

with (V-6)
Ljo 0,1,2, ... , Nl; L•IOLSO

The sun Ln (VI-5) consists of an even number (MI) of members rith
alternating signs. Accordingly, the truncatLon error of this sun (or
that of cvve •) should have an approxLmate order of sagnLtude equal to
that of the truncation error of the absolutely laraost one of the N!
members. lowever, the larSest mber cannot generally be defined, but
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an upper bound for it can be determined by the application of Schwartz's
inequality. This upper bound equals

U 7T Ej g E -vvEvy' (VI-7)

j--O

It will be demonstrated later that it is not unrealistic to use this
upper bound for the largest of the N! members in cvv, A because the use
of U and of the value

U' Tf Ej jEvV (V1-8)
j=O

both lead to the same approximate results. But U' is indeed one ot the
N! members in the sum of (VI-5).

In order to illustrate the derivation of formulae
(VI-7) and (VI-8), the term cvvyA is evaluated for the example case of
v=-2, v'=3, and N=3: For thi6 example, in none of the members in the
sum (VI-5) is there an E-term having as its first subscript v=2 or as
its second subscript v'=3. Disregarding the signs, the 6 members of the
sum are:

1. EooEjjE3 2 , 2. E00E12E3 j, 3. Eo0 E1 oE3 2, 4. Eo•0 E1 E.1 0 ,

5. E02EojE30s 6. E02EIoEnl,

The first of these mcwbers is the one which was generally denoted as U,
in (VI-8). Recalling that

n

i=l
or shorter,

Ev• xt xv,

Schwartz's inequality shows that

* Z~yDX~ • A : K X' 2

Therefore, and according to (VI-7), the value U a 9oo,2z Kr is also
an upper bound for U' = E0 0o 11Es3 . (As indicated before for the general

let case, both values 900911232 and RooZ0ll.'3ssE¶ will lead to the same
results with respect to the approximate orders of magnitude of the
truncation error of c53 .) To show the validity of the upper bound U for
one more member of the six, take the fourth: 2019129,o. Here one has
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Eo1 E12 E.I- XoXI Z XlX0  XXo - /Z x 2 x 2 x2 Z2T x= 2-- x?

X0 ~ xgx / 7  x E00E11/E22E33

Continuinp the main derivation, the truncation error
of cvV will be called S(Cvve) and expressed as 10-"Cve, where the exponent
H (> 0) is left unspecified for the time being. Therefore, replacing
the sum in (VI-5) by the term (VI-7) (which substitution, according to
the argument used, is possible only under the simultaneous multiplication
of both sides of (VI-5) with 10-") one gets:

(N__
6(cv,) = 1O'"cv - 10" TT T (Vl-9)

j=O

Here, it is sufficient to replace L by its approximate order of
magnitude. This can be set equal to the order of magnitude of the
product of the main diagonal elements of A,

N

j=0

which is the largest meubcr in the sum of the (N+l)• members in (VI-6).
In doing so, therefore, one actually replaces A by an upper bound which
results in a lower bound for the order of magnitude of the truncation
error of cvvs:

t(cvv) -f (i, '" vz-1o)

However, If the lower bounds of the truncation errors are able to cause
the large deviations in the off-diagonal elements of I* (as viii be
shown), these deviations are in reality even larger for the true trun-
cation errors in the cvve.

The element ivv. of Is a A"A is obtained as

N
iVV " 1: Cvv~gv~v.. (0-II)

go f ink Los

Cyp- * ',,. + 6(C,,,)

59



iT"WL REPORT W. 2035

where Cvv* is the true value of the inverse element (i.e., a value free
from truncation error and any other error) and where •(cvv*) is the
truncation error of Cvv* as defined before, one has from (VI-il):

N
iVV' z • [Fvv* + 5(Cvv*) }Ev*v,

%*=O

N
1 + - f6(cvv*)}Ev*v if v'=v

vk=O

N
0 + E (6(cvv*) Ev*v0 if ,'iv

, v*=O

This leads to the definition of the error of ivv0 caused by the
truncation error of Cvv°:

N
6(i v,) E E6(cvv*) ),v. • (VI-12)

Vk=0

(Notice that this derivation implied the assumption of no additional
truncation errors being introduced when forming ivv* .)

Inserting (VI-1O) into (VI-l2) one has:

N lO16(i~v.) g z. 10" - £V*V' M V-13)
\*=O / 5 vvve

At this point it is necessary to introduce another approximation.
Since only orders of magnitude are considered, it appears sufficient
to put, in general,

n
Evv' -a Z Xv I n x-V X-V (V-144)

i=!

Substituting these orders of magnitude in (VI-13), one gets

N •v' .

6(L"V• :-- (VI-15)
%*=0
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An identical result is obtained when the term (VI-8),

U', rather than (VI-7), U, is used to replace the sum in (VI-5). In
this case one has, instead of (VI-lO), for the truncation error of cvve:

S(cv.) lO-"Evv

EvvEviv

This leads to the error of iv0 , corresponding to (VI-13):

N
• ' ( i v ,) :-• Z 1 O - k ' E v * v E v * v '

"*=0 EvvEv*v*

Usirg again the approximation (VI-14), one has 6(ivve) ýF 6(ivvt, which
was to be shown.

Finally, using (VI-15), the matrix 6(Ic) of the
approximate orders of magnitude of the errors in I., caused by the
truncation errors 5(cvq,) only, ib obtained:

1 , t , . _v . ie, **

*,X'W __

•(18) (Nf 1) 10 ••

%I XP ;v

X% 9% X-1  K K6

1 K61
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The formulation (VI-16) shows the following: (a) the orders of
magnitude of the errors in the main diagonal elements of I1 (caused
only by truncation errors in the cvv) are approximately (N+I)l-H
and are, therefore, independent of the numerical values of the
independent variables; (b) the orders of magnitude of the errors in
the off-diagonal elements of I, are approximately the orders of
magnitude of the ratios, multiplied by (N+I)IO-, of the averages of
the independent variables as given in the matrix and are, therefore,
dependent upon the numerical values oi these independent variables;
(c) the approximate orders of magnitude of the errors of the off-diagonal
elements of IC are reciprocal with respect to the main diagonal (apart
from the factor (N+1)10-"), viz.,

6(ivv;) : (N+I)1O-'-4 i" versus 5(iv-e) •; (N+I)10-H XV

According to these findings, an off-diagonal element of
I, can appear to be so much in error that it is not even in the vicinity
of zero. This is particularly likely to happen when one deals with
polynomials. For example, in a polynomial in one independent variable
x, the term

n

n i.l

can be rather large when Ix 1> 1 and the exponent v is sufficiently
large.

If the order of magnitude of iv is called 1 0 M, then
the error of iov is, for example, according to (VI-15):

6(iov) Z (N+l) 10-xHV R (N+1) IO-H+m.

If M is approximately equal to H, the apparent deviation of iov from
zero can be considerable, and it is obvious that this deviation can be
large even if the matrix inversion was perfectly accurate within the
natural limitations of the computer accuracy.

The following simple example was actually computed
with DA-MRCA in order to illustrate what has been shown theoretically.
The numbers displayed are taken from the program output. There is only
one independent variable in the example, and its 5 distinct numerical
values were chosen extremely large in order to emphasize the effect.
The x values are as follows (written in the exponential format):
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.39062500E+ 14

.26435638E+15

.75493321E+15

.39721133Ei-16

.10000000E+ 17

The matrix A is accordingly:

F .50000000E+O1 .15030465E+171

L .•15J30465E+17 .11641902E+33j

From this, DA-MRCA computred A-':

F.32685427E-00 -. 42199048E-16

.42199048E-16 .14037838E-31

and, finally:

=A L.10000000E+O1 .64000000E+02]
78886091E-30 .10000000E+Oj

The deviation of io0 from zero is 64, that is, the apparent error of
io, has an order of magnitude 102. According to (VI-15), the error of
io, should have an approximate order of magnitude equal to that of
(N+I) x l0-Hil. The average of the 5 levels of x, = x is R = .30060931E+16.
Therefore, the error of io, should have an approximate order of magnitude
of 2(l0-")(.3)10+16 - 101'_". With H=14 ior the IBM 7030 (single precision),
the apparent order of magnitude of the error of io, equals the one theoreti-
ciliy predicted: 8(ioo) 0 = 1 1 0. Equally interesting is the
apparent order of magnitude of the errar of i1o = -. 78886091E-30 which is
10-30 if one neglects the negative sign. According to (VI-15), the
approximate order of magnitude of the deviation of i1o from zero should
be that of 2 ( 1 0-H) T which is 10-HI-0 16 = 10-29 with H=14. This
approximation, therefore, is almost as good as the one for 6(i 0o).
Finally, the errors in the main diagonal elements of I, should have
orders of magnitude equal tr that of 2(10-14) which cannot be observed
since only 8 digits are printed by the program. Obviously, in this
case, the good agreement between the predicted and apparent orders of
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magnitude of the errors in I. is due to the small rank of the matrix A.
It can be assumed that propagation errors are practically absent when a
matrix of rank 2, as in this example, is inverted. In this case, there-
fore, the apparent errors in the elements of I. should essentially be
the magnified truncation errors of the c~v,, the approximate orders of
magnitude of which are given by (VI-16).

It should be noted that the errors of the off-diagonal
elements of I,, might appear to be large not only when the x vatues are
very large (and of equal sign) as in the above example, but also when
the x valu.:s are very small (and of equal sign). If the latter is_ the
case, the deviations from zero of the elements in the lower half of I,
will. be very large.

The only way to guarantee that the errors of all
elements of I, will be of equal order of magnitude (i.e., (N+I) x 0-"')
would be to apply a standardizing transformation to the x values, such
as v = x which is discussed in Section VII.2.a. With R, : max(x) -
min(x), Rxthis transformation results in average valucs of the independent
variables which have an approximate order of magnitude I, and this, as
can be seen from (VI-16), leads to the uniformity of thE orders of
magnitude of the errors in all elementu of I,. OQtly in this case,
therefore, would it make sense to check the accuracy of all elements of
I,, or, preferably, of all elements of the residual matrrix I,-I. For
this situation a measure like the Euclidean norm could be used to
check the accuracy of I.-I and, thereby, the accuracy of the inverse
matrix.

However, as is shown in Section VTI.2.a, the trans-
X X

formation 7 can be very undesirable for c-1e program user in certain
situations..-It is essentially for this reason that in DA-MRCA the
accuracy checks on the identity matrix: are rLstricted to its main-
diagonal. Since all (N+l) 2 elements of-A-' are iLnvolved in this check,
it is felt that by this-check the program user is sufficiently protected
from inaccurate or fictitious inverses. .

In connection with the results of the present sectioi,
the reader is referred to an example case of a 5th order polynomial
which is also given in Section VII.2.a. In this example, the off-
diagonal elements of I, deviate from zero',to a much largor extenc than
indicated by (VI-16), which is in accordance with the as~umptions leading
to (VI-16). The deviations practically vanisLt when the x values are
"coded," i.e., when the transformation v = -xx is applied.

RX

V1.l.b.i32 The Choice of I(1) and I2(J

Restating from Section VI.l.b.(l), the program

rejects an inverse as unacceptably inaccurate when the largest deviation
fom I in the main diagonal of I, exceeds a value, 1(2), specified by
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the program user. As to the choice of 1(2), extensive studies have
been made by the authors. One method which was applied to find a
diroct relation between the maximum deviation of the icy from 1 and
the accuracy of the inverse, was the computation of perfect fit
rugression cases. In these cases the regression sum of squares, as
computed by using the elements of the inverse, via the regression
coefficients:

N
ASSRN = E bEE2y n 1

can be compared with its hand-computed equivalent. (This is the
exceptional case, mentioned in Section VI.l.b.(l), in which the
accuracy of the inverse can independently be checked.) The results
from the calculated example cases confirmed the experience gained by
the authors in many problems previously solved with DA-MRCA: The
chosen value of 1(2) should lie between 0.001 and 0.01, depending
upon the rank of A. With this choice the analyst can be confident
that inaccurate or fictitious inverses will be rejected by the program
and that, in general, sufficiently accurate inverses will not be
rejected.

Since the analyst might sometimes wish to visually
inspect the whole calculated identity matrix, DA-MRCA provides for the
possibility of printing it. The decision of whether or not to print
if is made by the program: only when none of the elements of I,-I is
in error by more than a value, I(I), specified by the program user,
will I., not be printed. The reason for this device is twofold:

(a) If I, is not printed, the user knows at once that
all errors are smaller than I(I).

(b) If the user is not interested in the inspection
of I,, he can possibly choose I(I) so large (but not larger than 1(2))
that in most cases I. will, in fact, not be printed, whereby printout
and printing time of the whole regression problem will be reduced. If
he chooses I(i) = 1(2), he will get a printout of I1 only in rejection
cases.

Occasionally the program user wants every identity
matrix printed. He can achieve this by putting I(1) = 0. Otherwise,
the choice of the value of I(1) must be left to the user. For the
purpose of acquainting the user with the program, concerning the
behavior of I,, the experience of the authors showed that a value of

I(1) in the vicinity of 10-4 should be chosen.
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VI.l.c Chi-Square Test on Normality of Residuals

Significance tests based on the main theorem-of multiple
regression (Section III.1) and the construction of confidence intervals
require normality of the distribution of the residuals e in the model
(I-i). The only way to test the hypothesis of normality is to examine
the distribution of the "estimated" residuals, e• = y! - I,, i = 1,...,n.
This is done in the present program by the Chi-square test. One should,
however, remember that the F test (III-1) of the main theorem is rather
robust with respect to the form of the distribution of the residuals.
Therefore, unless striking evidence of non-normality is shown by either
the bar chart of the frequency distribution of the e, or the computed
Chi-square value, or both, the analyst would not be too concerned about
the hypothesis testing aspects. For interval estimation, however,
normality as demonstrated by the ýe is essential.

Both the bar chart and the Chi-square value (if it can
be computed) should, therefore, be considered merely as aids to determine
whether a transformation of the observed values of the dependent variable,
y, would be necessary or helpful to achieve normality or approximate
normality of the residuals. Also, the possible significance of the
computed Chi-square value should not be taken too literally. The
Chi-square test for normality is only an approximation, and the number
of degrees of freedom, m-K-3, obtained by subtracting the number, K+2,
of parameters estimated (K+l regression coefficients itus the standard
deviation in case of a model containing K IV's) from m-i, where m is
the final number of intervals, certainly is a safe lower limit.

The fixed number of 30 initial intervals into which the
observed range of the residuals is partitioned also deservws some
discussion. As outlined in more detail in Section VI.2.a.(3), the
Chi-square subroutine automatically arrives at a new partitioning of
the range into m'-30 intervals by combining subsets ot the 30 initial
intervals into m new intervals such that each one of the m has an
expected number of more than 5 observations. ThI initial number of
30 intervals was chosen as a compromise t, avoid the
extremeq of: (1) having, in most runs, few expe.ted residuals (little
more than five) in each of the final m intervals, and (2) having, in
most runs, too small a number m such that the dearees of freedom of
Chi-square, m-K-3, would be non-positive.

In this section the basic steps of the computational
prvedure of IVOR ("Independent Variable Qrderins by Regression sum of
squares") are explained. The principles of this ranking method and Lts
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applications, along with those of BIVOR, were already discussed in
Section 111.2; whereas the computational details in the subroutine
IVOR (including the relevant checks for the acceptability of a rerun
and internal decisions based on these checks) are given in Section VI.2.c.

The N independent variables (OCIV's and GCIV's, or OCIV's
only) in the preconceived model of a regression problem are optionally
divided into M, consecutive groups according to the IV input sequence,
with N5 independent variables in the respective groups, j = I,...,M 1 .
The primary purpose of the grouping option is to allow the possibility
of ranking IV's under "restricted admissibility." (This type of ranking
has several applications as discussed in Sections 11.3 and VII.2.a.)
Another use of the grouping feature is as a device to save computing
time; see the remarks at the end of this section (VI.l.d). Not all
N IV's in a given regression problem need be included in the grouping.
If the total number,

MI
Z N.,

j=l

of the independent variables in the M, groups is less than N, the last
(or rightmost)

M1
N- ZN,

j=l

independent variables are excluded from the IVOR ordering. If the user
does not want to use the grouping at all, he should put all IV's in one
group, i.e., let M -= I and N, = N. (See input preparation for Card
Type 4, Section V.2.)

IVOR starts the ordering within the first (or leftmost)
group of NH IV's and, after having completed the ordering within that
group, proceeds to the second group and further to the right until the
ordering is completed within all M groups.

For the present description only, the IV's of group J,
j i,...,M 1 , are denoted by x•jI, h -- l,...,jN. With this notation,
the first. N, steps of IVOR are:

FirstSe. Each of the N, IV's of the first group
(x3O; h % L,...,Nl) is included in the model, one at a time, as the
only independent variable in the model. For each [V the ASSR value
(Regression Sum of Squares Adjusted for the man) is computed. Among
these N, ASS& values the maximum is found and the independent variable
whose inclusion in the model led to the maximum is denoted as 41H.
Accordingly, x(' is considered as the most important IV in the first
group.
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Second Step. Each of the N1 -1 IV's of the first group
which have not yet been ranked (xý'); h I,...,Nl but i (1)) is
included in thrf. model, one at a time, together with x•3, the IV
ranked most impuraiit in the first step. That is, in the second
step, the model always contains two IV's, of which one is xHH.
Then the N1 -1 ASSR values due to the NI-I sets of two IV's are
computed and the maximum is found. The independent variable which,
in union with x4f, led to this maximum ASSR value is denoted as
xli2 and is considered as the second most important IV in the first
group.

Third Step. Each of the N1 -2 IV's of the first group
which have not yet been ranked (xh); h = I,...,N 1  but J (1) and (2))
is included in the model, one at a time, together with xW nd
Then the NI-2 ASSR values due to the NI-2 sets of three IV's are
computed and the maximum is found. The independent variable which
together with xW1j and x~l, led to this maximum is denoted as 411

and considered as the third most important IV in the first group.

Step 4 to Step N1 . The rocedure is continued,
corresponding to Steps 1-3, until xlN_-) is found in Step N1-l. In
step N1 , the remaining IV in the first group is, naturally, considered
to be the least important one and is denoted as xf•).

The remaining steps of IVOR are as follows:

Stop Nj+1. Each of the N2 WV's of the second group
(xka; h = 1,T...?N) is included in the model, one at a time, together
with all N, IV's of the first group. Then the N2 ASSR values are
computed, each one due to N141 IV's. Among these Na ASSR values the
maximum is found and the independent variable of the second group
whose inclusion in the model led to this maximum, is denoted as xW.
This IV is considered as the most important independent variable in
the second group.

Steps (N1+2) to (N,+Ns) follow correspondingly.

The procedure is continued with the third group, fourth
group, etc., until all independent variables in all groups have been
ranked.

The procedure thus described may be called the "standard"
MVOR procedure. Bimever, since the number of matrix inversions and

relevant computations performed by the "standard" IVR routine may
result in excessive computer tim, an input parmster, IQ (colums 1
and 2, Card Type 4), is available for possible use in limiting the
Smamer of WV's to be ordered by VORt. If 1 > 0. only the IQ most
important independent variables will be found, i.e., ordered by IVOR
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under this option, and the N-IQ least important IV's will not be
ordered at all. IQ must fulfill the inequality

M,

IQ Z NJ
j=l

but can otherwise be chosen freely, such that, for example, the
ordering may cease after some IV's of a given group and all IV's in
the previous group(s) have been ordered. For example, with

j*
IQ= Nj + 3,

j=l

where Nj*+ 1 > 3, saý, IVOR will first order the E NJ=j

independent variables in the first j* groups as described above. Then
it will find, among all N1*+1 IV's of group j*+l, the three most
important ones in the usual manner and cease ordering. The last
Nj,+,-3 IV's in group j*+l and all IV's in the subsequent groups will
be left unordered.

Two remarks should be made with respect to the grouping
feature in the IVOR procedure.

The first concerns its use as a means to rank IV's under
restricted admissibility. Namely, the sequence in which the IV's,
especially GCIV's, are input to the program is critical when the
grouping option is exercised for this purpose. Since the allocation
of the IV's to the various groups is performed according to the input
sequence, it is necessary to input first all those IV's which would be
admissible for ranking at the first step of IVOR and, therefore, would
define the first group. In general, these would be the OCIV's, that is,
IV's with a powersum of I. In general, all IV's with a powersum of 2
would follow next, that is, all GCIV's representing terms of second
order; etc. In other words, the GCIV's would have to be specified in
the sequence indicated in the example given for Card Type 3 (see
Section V.2).

The •econd remark concerns the use of the grouping feature
as another device (along with the IQ feature) to save computing time.
One such time saving effect is achieved by specifying

M2
I:NJ < No
J-6
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provided the user is willing to sa.ve time by not ranking the

Mr
N - EN.

j=l

rightmost IV's. Also, the user can group the IV's by qome preconceived
scale of importance which, in case of GCIV's being present, may or may
not be the grouping required for ranking under restricted admissibility.
Computing time is saved because the IVOR ordering always takes place
within only one group at a time, which leads to fewer matrix inversions
and relevant computations than would be necessary when the IV's were not
grouped. Again, the user has to specify the input order of IV's such
that this grouping by preconceived importance is possible. When choosing
time saving devices in IVOR, the user should clearly distinguish between
the consequences of using IQ and the grouping feature.

The program user should be aware that whenever he applies
the grouping feature (with N, > 1), IVOR will give a ranking of
independent variables, by prediction power for the dependent variable,
within only the designated groups of IV's. This ranking may be called
"sub-ranking", in contrast to the ranking when all IV's are considered
to be in one group (MI = 1). (See also the discussion of the ranking
results for the example problem in Section VI.5.)

VI.l.e BIVOR

The computational procedure of BIVOR ("Backward Independent
Variable Ordering by %egression sums of squares") is based on principles
similar to those of IVOR which were discussed in the last section. In
the present section, therefore, the essential steps of BIVOR are given
while reference is often made to Section VI.l.d.

The optional grouping of IV's is done in the same manner
as in IVOR; however, the number Mb, of groups in BIVOR and the numbers,
N., of IV's in the groups (qml,...,Ne) may be different from N and the
N. of IVOR, respectively, when both options, IVOR and BIVOR, are
exercised. Also in BIVOR, the

N - M Nq
q=1

rhmost IV's may be excluded from the ordering. As to the use of the
grouping feature in NP/OR, see the remarks at the end of the present
section.
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For the following description it will be assumed that

me
Z Nq = N,

q=l

which does not affect the general validity of the description. BIVOR
starts the ordering within the last (or rightmost) group of Nma IV's
and, after having completed the ordering within that group, proceeds
to the next to last group and further to the left until the ordering
is completed within all Me groups. In more detail, the first NM =NM
steps of BIVOR are as follows. (For clarity and for the rest of the
present section only, the subscript "B" (for BIVOR) will be eliminated
from all terms such that Ms becomes M and NM, becomes NM.)

First step. All

M
Z Nq = N

q=l

independent variables are included in the madel and the corresponding
matrix of the normal equations is inverted. Then the NM additional
regression sums of squares, SSN.(N-i) = SSI, which are due to each of
the Nm IV's contained in the last group, are computed. Their values
are obtained by computing [b )]2/c(", (see Hader and Grandage [19581,
p. 126), where the b") are the regression coefficients of the Nm IV's
in the last group, and the c~v are the corresponding main diagonal
elements of the inverse matrix. Of these Nm SS, values the minimum is
found and the IV whose deletion led to it is denoted as x4fl. Accordingly,
this independent variable is ranked as the least important one in the
last group. Notice that this IV which was ranked first, as the least
important one, received the subscript "(1)." In IVOR it was the mast
important IV which received the subscript "(1)." This convention is
correspondingly applied in the following steps of BIVOR.

S_),ndStop. The IV found least important in the first
step, xg•, is deleted from the model and the matrix of the normal
equations corresponding to the N-I IV's remaining in the model is
inverted.

In order to find the minimum of the NN-1 values
SSN.04_2) a SS2, due to the least important IV found in the first
step plus any one of the N"-l IV's not yet ranked in the last group,
the following relation is used. By the addttivity property of add.tional
regression sums z. squares one has SS SSi 1) + SSr), where SS is due
to the least important IV in t.he last group. xk' and SS,2 ) is the
additional regression sun of squares (after x(11 is deleted from the
model) due to any one of the Np-1 IV's not yet ranked in the last Rroup.
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Since SS(1) is a constant in the iearch for the minimum of SS 2 , only
the NM-i SS(2) values need be searched for the minimum. These values
are obtained in the program by computing the terms [b(2)]2/C(2), where
the bý2) are the regression coefficients (at the second step) of the
NM-I IV's and the Cvv are the corresponding main diagonal elements
of the inverse matrix. Of these NM-I values the minimum is found and
the IV whose deletion led to it is denoted as 4,2,. Accordingly, this
IV is ranked as the next-to-least important one in the last group.

Step 3 to Step NM. The procedure is continued, corresponding
to the first two steps, until x(Nm.1) is found in Step NM-I. In Step
NM, the remaining IV in the last group is, naturally, considered to be
the most important one and is denoted as x"

The remaining N-Ng steps of BIVOR are as follows:

Step NM+l. All N-NM IV's are included in the model and the
corresponding matrix of the normal equations is inverted. The minimum
of the additional regression sums of squares, SSN--(-N,--) = SSN +1,
is found by searching for the minimum of the values
[b•NN+1)]/cvM+V). Here, the b6 •,+1) are the regression coefficients
(at Step Nm+l) of each of the N.._ IV's of Group o-1 and the cVeV1)
are the corresponding main diagonal elements of the inverse matrix.
The IV whose deletion (from Group -1-) led to the minimum is denoted
as x45" and is ranked as the least important one in Group M-1.

Steps (NM+ 2 ) to (Nm+N%. 1 ) follow correspondingly'.

The procedure is continued through the remaining 1-2 groups
until all independent variables in all groups have been ranked.

The additional regression sums of squares as computed in
BIVOR deserve some more discussion. The quantity

C VV

equals the familiar numerator in the F statistic to test the hypothesis
= 0 in a model containing, say, N' IW's:

F M(vI-1))

In other words, the quantities b;/cvv used in BIVOR to find the least
important IV in a given group at a given step (with a model containing
N' IV's), are equal to the quantities used to test, In the familiar
manner and one at a time, the significance of the N' regression
coefficients. However, because of the correlations that generallyexist amonF all the N' IV's, one woulJ not obtain a meaningful ordering
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of IV's if the F values (VI-17) of the IV's were computed and ranked
according to their magnitudes. Therefore, at a given step of BIVOR,
the least significant of these quantities is selected and the corresponding
IV is deleted from the model, whereupon at the next step, again the
smallest of the b2/cvv quantities is found and again the corresponding
IV is deleted from the mo>del, and so on. This process then leads to
the BIVOR ranking of independent variables by prediction power for the
dependent variable, as described.

Because of the possible existence of compounds (see
Section 111.2) the minimum values of the bv/cvv quantities can vary
considerably from one step of BIVOR to the next. In fact, once a
significant model has been found based on the BIVOR ordering and on
the main theorem F value, (III-1), indegendent variables ranked as
"1more important" could very well have bý/cvv values which are much
smaller than the one corresponding, for example, to the "least
important" IV of the significant model. This would appear as if less
significant IV'swere ranked as being more important than the more
significant IV's. However, this conclusion is wrong, and the right
conclusion should be that a compound is present.

As in IVOR, the grouping feature in BIVOR can be used as
a means to rank IV's under restricted admissibility. This grouping is
done in much the same way as was discussed in the last section (VI.l.d)
and has the same possible consequences with respect to "subranking" as
were mentioned there.

In BIVOR, the grouping option is, besides its application
to' ranking under restricted admissibility, the only device available
to save computing time. The fact that not all N IV's of the precon-
ceived model need be included in the grouping makes the time saving
possible. With

M

q=l

the last

N -I NQ
qftl

independent variables will be excluded from the BIOR ordering.
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VI.2 Computational Details

In this section the computational details of DA-XRCA are
described for one regression problem, The intention is not to give a
description of the details contained in the flow charts (Section VIII.2)
or in the progdam listing (Section VIII.4), but rather to describe the
more important computations and decisions made by the program, inasmuch
as they are not discussed in previous sections. Also, justifications
are gix n for some of these details where considered to be helpful in
understaading the progre.--. Along with the: description, all possible
statements ari quotea wL,•ch may result from computational decisions and
appear as pr'-tout. Whenever mention is made that the "program stops",
this refers te the one regression problem being processed, if not
"otherwise stated. In this case, should there be more than one regression
problem to be processed by DA-4RCA, the program would go to the next

-problem.

-Generally, the order in which the computational details are
described is the order in which they are performed by the program. In
some places this order is not kept for the purpose of a better under-
standing of the- description.

References to subroutine names are not made since in some
insta :-es the same type of computation is executed, at different places,
by different subroutines. Theinterested reader is referred to the flow
chacts in Section VIII.2.

The computation and use of the "Analysis of Variance Tables"
and of the "Final Comprehensive Analysis Table" are not discussed in
this section. This is done only in Section VI.3.b.

VI.2.a Main Run

In tbhs section the computational details of the main run
are given. However, most of these computations are correspondingly
performed for any rerun. (See Suctions VI.2.b - VI.2.d.)

V...2a.j() Initial O.,erations

The operations described in this section are performed
only once per regression problem, i.e., they are pertormed for the main
run but are siot repeated if reruns are included in the r'tgression
problem.

A. It the total number, IR+IS-N, of independent

variables input is 0 or - 51, the plogram stops and the statement
"CA!)D TYPE 2 IS INORRECT" is printed. Otherwise (0 -- N -' 51) the
pr'i,,oam continues.
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B. If the number, n, of data points input is • 1
or > 7000, the program stops and the statement "TOO FEW OR TOO M4NY
DATA POINTS" is printed. Otherwise (I < n - 7000) the program continues.

C. The summation matrix is computed. However, only
the elements of the maii, diagenal and those above the main diagonal
are 3ctually Lomputed. Since the summation matrix is symmetrical, the
elements below the main diagonal are merely copied from those above the
diagonal.

VL.2.a.(2_) Matrix Inversion and Accuracy Checks

The operations described in the following paragraphs
A - I aye performed for the main run and, in general, for any rerun.
The computations are expressed in terms of K independent variables
contained in the model, where K=N defines the main run and K=N' < N
defines a rerun, with N' IV's contained in the model.

A. The inverse of the (K+I)x(K+I) matrix A, i.e.,

the inverse, A1 , of the matrix of the normal equations- is computed.
(The computational procedures iuvolved in the matrix inversion, the
computation of the determinant and the solution of the normal equations
are explained in detail in Suct-ion VI.L a.)

B. The ,4eterminant.ut A is tested and if found- to be
non-positive, the statement ".MATRIX FAILED TO INVERT" is printed. -For
this case, and in the main run only, the averages of the N IV's and of
the dependent variable are computed and printed and the program goes
to reruns (if any) . Also, if the determinant is non-positive for the
main run, there will be no-final comprehensive analysis for, any type~of
reruns (HAND selected, IVOR,. or BIVOR), and the fol6w-i-ng statement is
made at the end of the printout of the regression problem: -"NO FINAL
COMPREHENSIVE PRINTOUT SINCE MATRIX FOR MAIN RUN COULD NOT BE INVERTED."
- In case of a hand selected rerun, the program goes to the next hand
selected rerun (if any). In case of an IVOR or BIVOR rerun, see
Sections VI.2.c or VI.2.d, respectively. - If the determinant is positive,
its value is printed, along with the inverse matrix and the solution to
the normal equations (regression coefficients).

C. The following values are computed:

(a) The error sum of squares,

K
SSE E,.., - bvE .
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n n
(where EYY = 2j-y and Evy = E xvyiY, with xl = 1);

i=l i=l

(b) The total sum of squares adjusted for the
mean, ATSS EY) n 1

(c) The regression sum of squares (due to K
independent variables) adjusted for the mean,

K E 2
ASSRK Z bvEVy -

v=-0

(d) The square of the correlation coefficient,
i.e., the coefficient of determination,

R;> =ASSR .

ATSS

D. R 2 is tested and if found to be negative, the
s.atement "SQUARE OF CORRELATION COEFFICIENT IS NEGATIVE" is printed.
For this case, and in the main runi-only, the operations concerning the
averages and the final comprehensive analysis are performed as
described in paragraph B above. - In case of a hand selected rerun,
the program goes to the next one (if any). In case of IVOR or BIVOR,
see Section VI.2.c or VI.2,d, respectively. - If R21> 0, the correlation
coefficient (R) is computed and printed.

E. The residual variance (s 2 ) is computed by
dividing SSE by n-K-l. The residual variance is then tested and if
found to he negative, the statement "VARIANCE IS NEGATIVE" is printed.
For thiL case, and in the main run only, the operations concerning the
averages and the final comprehensive analysis are performed as described
in par4• "aph B above. - In case of a hand selected rerun, the program
goes to the next one (if any). In case of IVOR or BIVOR, see Section
VI.2.c or VI.2 d, respectively. - If s2 is found to be non-negative,
the square root of the residual variance (s) is computed and printed.
(If the quantity n-K-l=0, s is set equal to zero and the F value of
the ANOVA table is printed as all nines. This is the case of the
"zero error perfect fit.")

F. The elements of the main diagonal of the inverse
matrix (the cvv) are tested. The first element found to be negative
(if any) results in the statement "AN ELEMENT OF THE MAIN DIAGONAL OF
THE INVERSE MATRIX IS NEGATIVE." For this case, and in the main run

76



NWL REPORT NO. 2035

only, the operations con-erning the averages and the final comprehensive
analysis are perforned as described in paragraph B above. In case of
a hand selected rerin, the ; :ogram goes to the next one (if any). In
case of IVOR or BIVUR, see Section VI.2.c or VI.2.d, respectively. -
If there are no negative elements on the main diagonal, the standard
deviations of the regression coefficients are computed:

/ V[bD] = s /cvv, where v = 0,1,...,K.

G. The elements of the calculated identity matrix
(IG), the ivv, (v,v' = 0,1,...,K) are obtained by forming the product
of the inverse matrix (A-') and the matrix of the normal equations (A),
in this order. The identity matrix is used for checking the accuracy
of the inversion process. The specifics of this use and their justi-
fications are discussed in Section VI.l.b.

H. The absolute values of the deviations from 1 of
the main diagonal elements of I. are tested against I(I). The first
deviation found to be >- I(i) (if any) is tested to determine if it is
also >- 1(2). If it is, the identity matrix is printed with the state-
ment "DEVIATION OF A MAIN DIAGONAL ELEMENT IN THE IDENTITY MATRIX
LARGER THAN 1(2) = .... RUN REJECTED." In the blank the input value
of 1(2) is printed. In this case the program goes directly to the
operations described in Section VI.2.a.(3). If the first deviation
which is -- I(1) is not Ž 1(2), the testing is continued on the
remaining diagonal elements. If any of the deviations of the main
diagonal elements are Ž I(1) but none of these deviations is Ž- 1(2),
the identity matrix is printed with the statement "DEVIATION OF A
MAIN DIAGONAL ELEMENT IN THE IDENTITY MATRIX LARGER THAN I(i) = ....
BUT LESS THAN 1(2) = .... RUN ACCEPTED." In the blanks the input
values of I(I) and 1(2) are printed.

I. If all deviations (absolute) of the main
diagonal elements are < I(i), the absolute values of the off-diagonal
elements are tested. The first time that an off-diagonal element
(absolute) is > I(I), the identity matrix is printed with the statement
"DEVIATIONS OF ALL MAIN DIAGONAL ELEMENTS IN THE IDENTITY MATRIX SMALLER
THAN 1(1)..... DEVIATION OF AN OFF-DIAGONAL ELEMENT LARGER THAN I(I).
RUN ACCEPTED." If all off-diagonal elements also have absolute values
SI(I), the identity matrix is not printed, but the statement "DEVIATIONS
OF ALL ELEMENTS OF THE IDENTITY MATRIX SMALLER THAN I(I) ..... RUN
ACCEPTED" is printed.
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VI.2.a.(3Y Predicted Values, Prediction Errors,
Normality Test, and Averages

The following operations A - I are always performed
for the main run and are optionally performed for reruns. As in the
last section, the operations are expressed in terms of K independent
variables contained in the model.

A. The n predicted values (the 11) are computed by
evaluating the obtained regression equation for each of the n input
design points.

B. The prediction errors, ej = yt - Y,, are computed
for each input design point by subtracting the predicted value from the
observed value of the dependent variable. The normality Lest described
later in this section is performed on these prediction errors. Some
general aspects of the test are discussed in Section VI.L.c.

C. The sum of squares of the prediction errors,

n
S(yj

i~ 1

is computed. This sum of squares should equal the error sum of squares,
SSE, given in Section VI.2.a.(2), paragraph C, and is identified, when
printed, as the "CHECK ERROR SUM OF SQUARES." The check error sum of
squares is computed as an additional check on the computational accuracy.
Since the values e4 = y4 - are already computed, this check is
inexpensive. However, no sensing is built into the program to compare
the two error sums of squares.

D. The maximum and minimum of the n prediction errors
are found and the range (= the maximum prediction error minus the
minimum prediction error) is computed. The range is then divided by
30 to give the common length (D) of the 3C intervals used in the
prediction error frequency distribution. The upper bounds of each of
the 30 intervals are computed by adding D, 2D, 3D, . , 30D, respectively,
to the minimum prediction error. Thereby, the maximum prediction error
becomes the upper bound of the last interval.

Each prediction error is then assigned to its
proper interval, i.e., to the interval with the smallest upper bound
which is not exceeded by the prediction error. A count is then made
of the number (fV,) of prediction errors observed in each of the 30
intervals. The f'e are used in the bar chart of the printout, see
the following paragraph (E).

E. The quantity n _ (K+3) is computed and checked.
If this quantity is 0, the bar chart is printed, along with the

78

•:, .• - • -•au•-- __ m• • •-'• • ' T . •



NWL REPORT NO. 2035

statement "CHI SQUARE COULD NOT BE COMPUTED." For this case, and in
the main run only, the program goes to the operations described in
paragraph I below. - In case of a hand selected rerun, the program
goes to the operations described in Section VI.2.a.(4), should the
option for selected and/or synthetic design points be exercised. -
This check is a joint consequence of (1), the restriction that p,
the expected number of observations in an interval, should be greater
than 5 and (2), the definition of the degrees of freedom for the
Chi-square statistic as the number of intervals, for which cj > 5,
minus K+3. The circumflex on y is used to express the fact that
these expected frequencies are based on the estimates of the mean and
the standard deviation of the distribution of the prediction errors.
If the quantity E - (K+3) is : 0, the degrees of freedom for Chi-square
could never be > 0 and further computations would be meaningless. The
restriction on cpj and the degrees of freedom for Chi-square are more
fully discussed in the following paragraph F.

n_F. If the quantity n - (K+3) is > 0, an attempt

is made to compute the Chi-square statistic. The expected frequency
distribution is formed. This distribution gives the number of
prediction errors that would be expected in each of the 30 intervals
if the sample of n prediction errors was actually from a normal
distribution having a mean and standard deviation equal to those of
the observed prediction errors. Since the expected frequency in each
interval is computed by a system subroutine which uses the standardized
normal distribution function, the 30 upper bounds must be standardized
by dividing each upper bound by s. (The average of the observed
prediction errors is zero and, consequently, is not subtracted in
standardiz 4 ng the upper bound.) The expected frequency in each of the
30 intervals is obtained by multiplying the nunber of data points, n,
by the probability, obtained from the standard normal tables, that an
,observation will be in a given interval. The expected frequencies in
each of the 30 intervals are then examined and, if necessary, some of
the intervals are combined in order that each of the resulting m
intervals has an expected frequency of more than 5. If, for example,
the expected frequency in the first of the 30 intervals is • 5, the
frequency is added to that of the next interval. This procedure is
continued until the first time a new interval results which does have
an expected frequency of more than 5. Succeeding intervals are
similarly tested and, if necessary, combined. If the last interval,
or intervals, does not have an expected frequency of more than 5, it
is combined with the last interval which did have a frequency of more
than 5. In this way m "new" intervals are formed, each of which has
an expected frequency, •, greater than 5.

G. The number (fj) of observed prediction errors
is counted for each of the m intervals and the contribution to
Chi-square is computed for each interval. The contribution for the
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jth interval is

4~(fj -

where f, and -p are as defined above. These contributions to Chi-square
are then printed for each of the m intervals, along with the observed
and expected number of observations in that interval.

H. The quantity m-K-3 is computed. If m-K-3 5 0,
the statement "CHI SQUARE COULD NOT BE COMPUTED" is printed. In this
case the program continues as described in paragraph E above.

If m-K-3 > 0, the Chi-square statistic is computed
by summing the individual contributions over the m intervals.

I. Only in the main run are the averages of the N
independent variables and of the dependent variable computed and
printed.

VI.2.a.(4) Predicted Values and Prediction Standard
Deviations at Selected Input and/or Synthetic Design
Points

If the ron (main run or hand selected rerun) passed
all tests in paragraphs B, D, E, and F cf Section VI.2.a.(2), and if
selected input and/or synthetic design points are present (see columns
8-13, Card Type 2, Section V.2), the coordinates of the OCIV's of these
points are printed and the corresponding predicted values and prediction
standard deviations for either individual observations or for the
prediction line are computed and printed. If the run did not pass the
four tests mentioned above, predicted values and prediction standard
deviations cannot be obtained for either selected input or synthetic
design points.

VI.2.b Hand Selected Reruns

In order to execute a hand selected rerun (if any are
specified) the program deletes the proper rows and columns from the
summation matrix according to the specified independent variable
selection of K = N' < N IV's. The operations described in Section
VI.2.a.(2) are then performed for this IVS (with the exceptions
mentioned there). If NPE=-1 (column 15, Card Type 2), the operations
of paragraph A - H of Sectlon VI.2.a.(3) are also performed for this

Predictions and prediction standard deviations for

selected input and/or synthetic design points are computed only when
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the option is exercised and when the hand selected IVS passed all
tests described in paragraphs B, D, E, and F of Section VI.2.a.(2).

VI.2.c IVOR

In this section the computational details which are
performed to arrive at an IVOR ordering of independent variables are
described. (The IVOR ordering is explained in Section VI.l.d.)

If
Mz

E NJ = N,
j=l

only the first N-1 steps of IVOR are performed since the main run has
already been performed. There is no possibility in IVOR to call, in
each IVOR rerun, for predictions and prediction standard deviations at
selected input and/or synthetic design points. As indicated before, if
the main run fails any of the tests performed on the determinant, R,
s 2, and the cvv 's (as described in raragraphs B, D, E, and F ofSection VI.2.a.(2)), there will be no IVOR Final Comprehensive Analysis.

At any given step of IVOR (where "step" is as defined in
Section VI.l.d) the following operations are performed:

A. The established IVOR model of the preceding step is
augmented by one independent variable at a time. There may be left,
say, H IV's not yet ordered within the group in which IVOR is presently
operating. Each of the H IV's is added, one at a time, to the IVOR
model of the preceding step by deleting one less row and column from
the summation matrix than in the previous step. Each of the H corre-
sponding matrices of the normal equations (A) is then inverted and its
determinant computed.

B. The procedure to decide whether or not to accept any
of the H independent variable selections for further consideration at
this step depends upon whether the main run was accepted or rejected.
("Acceptance" is defined as passing all 5 tests described in paragraphs
B, D, E, F, and H of Section VI.2.a.(2). "Rejection" is defined as
failing one or more of these tests.)

(Ba) If the main run was accepted: The determinant
is checked for each of the H IVS's and if found to be non-positive,
this IVS is excluded from further consideration at this step. For
all IVS's with non-positive determinants the statement 'VTITIX FAILED
TO INVURT, IVS ....... " is printed, where the blank is filled by the
identification of the PVS. For all M/S's whose determinant is found
to be positive the ASSR value is computed. Should all H determinants
be non-positive the stetement "NO VALID ASSR'S WERE COMMUUD" is
printed and the PVOR ordering Lb terminated.
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(B.b) If the main run was rejected: R2 and s2 are
computed for each one of the H IVS's. R2 and s2 are then tested to
determine if either of them is negative, and the determinant is tested
to determine if it is non•-positive. If a failure occurs, the statements
concerning the determinant, R , and s2 as given in paragraphs B, D, and
E of Section VI.2.a.(2) are printed along with the IVS identification.
These IVS's are excluded from further consideration at this step. Then
the operations described in paragraphs F, G, H, and I of Section VI.2.a.(2)
are performed for each one of the H or the remaining IVS's. If for a
given IVS an element of the main diagonal of the inverse matrix is found
to be negative, the appropriate statement is printed and this IVS is
excluded from further consideration at this step. If an IVS has to be
excluded from further consideration because an element of the main
diagonal of the identity matrix has an absolute deviation from 1
greater than 1(2), the appropriate statement is printed together with
the identification of the IVS. (The other possible statements concerning
the elements of the identity matrix are printed only when the IVS is
later chosen as the established IVOR model of this step.) If none of
the H IVS's could be accepted, IVOR stops and prints "NO VALID ASSR'S
WERE COMPUTED."

C. If, in either case of paragraph B (above), only one
IVS of the H considered led to a valid ASSR value, this IVS represents
the established IVOR model at this step. In other words, the individual
IV whose inclusion led to the only valid ASSR value is ordered as the
independent variable with the maximum contribution to the "total"
regression sum of squares at this step. For this IVS, all pertinent
printouts are given. Also computed and printed for this IVS, provided
the option is exercised for reruns, are the predicted values, the
prediction errors and the normality test as described in Section VI.2.a.(3).
IVOR then goes to the next step (if there is any).

D. If more than one IVS in paragraph B (above) led to a
valid ASSR value, these values are compared among themselves as follows.
The valid ASSR value corresponding to the IVS with the leftmost IV
added to the model of the preceding step is denoted as ASSR"'). Then
for each of the remaining valid ASSR values (the ASSR) 's, say) the
following quantities are computed:

I ASSR"ssR).SR I
ASSR";)

(D.a) If none of tie quantities At exceeds the fixed
Svalue .5 x i0e, all of the ASSR's are considered to be equal and a
"perfect fit" is considered to have been reached. (When a perfect
fit is being reached, each rW contributes the same additional regression
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sum of squares towards the ASSR value of this perfect fit.) The left-
most IV is then defined as the most important IV ordered at this step,
and a complete printout (as discussed in paragraph C above) is given
for the corresponding IVS, along with the statement "PERFECT FIT.
IVS = ..... " The IVOR subroutine then stops completely.

(D.b) If one or more of the quantities Al exceeds
the value .5 x 10"8, the maximum ASSR value is found and the IV which
led to the maximum is considered as the most important IV at this
step. A complete printout (as in paragraph C above) is given for the
corresponding IVS, and the IVOR subroutine goes to the next step (if
there is any).

VI.2.d BIVOR

In this section the computational details which are
performed to arrive at a BIVOR ordtring of independent variables are
described. (The BIVOR ordering is explained in Section VI.l.e.)

If 2 Nq < N, BIVOR deletes the last (N - 7 N,)
q= 1 q= 1

independent variables from the model of the main run by deleting the
corresponding rows and columns from the summation matrix. BIVOR then

1%
starts the ordering by inverting the matrix with •. independent

q-l
variables contained in the rodel.

There is no possibility in BIVOR to cal,. in each IVOlt
rerun, for predictions and prediction standard deviations at selected
input and/or synthetic design pot.its. As indicated before, if the main
run failed any of the tests perfotmed on the determinant, e s.a", and
the Cvv's (as described in paragraphs 5, 0, 1, and F of Section
Vr.2.a.(2)), there will be no IMVOR Final Comprehensive Analysis.

The operations at any given step of IVOlt (where "step"
is as defined in Section VI.l.e) are dependent upon whether or not the
preceding step led to an accepted IVOMt rerun.
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A. If the main run was rejected and all preceding
steps of BIVOR (if any) led to rejected reruns, the operations are
as follow:

(A.a) From the BIVOR model (which wes rejected) of
the preceding step the rightmost IV is deleted by deleting the corre-
spoading row and column from the matrix of the normal equations (A)
of the preceding step. Then the elements of the inverse matrix A-',
the determinant of A, R2 , and S2 are computed. These values are
subjected to the respective tests described in paragraphs B, D, 9,
and F of Section VI.2.a.(2). If the new IVS fails any of these tests,
again the rightmost IV is deleted from the model for the next step
and the checks are repeated for the new model. - If the new IVS
passes all 4 tests, the operations of the next paragraph (A.b) are
per formed.

(AKb) The identity matrix,I = A-"A, is computed for
the present step's IVS (which passed the four checks mentioned in the
last paragraph). Then the checks as described in paragraphs H and I,
Section VI.2.a.(2), are performed on tite elements of I.. The first
time a main diagonal element of I, has an absolute deviation from I
which is greater than 1(2), the IVS of the present step will be
rejected. However, in this case this IVS will be given a complete
printout, including the predicted values, prediction errors and
normality test (Section V1.2.a.(3)). The reason for this treatment
is that the value of I(2) is, after all, an optional input value
chosen by the program user and that the IVS rejected on the grounds
of 1(2) may be marginal in its accuracy but essentially acceptable.
By having the printout for this run, the analyst is given additional
information as to the possibility of reconsidering the regression
problem with some of the input parameters changed. There is, in this
case, a certain danger of misinterpretation of the printout. Although
at each individual BIVOR rerun the statement is printed that this run
is rejected, ir Could appear, from the final comprehensive analysis
(if this is printed), as if the series oi deletions from the right was
a genuine BIVOR ordering of independent variables. This will occur
most likely when the value of 1(2) was chosen too small. - Also i1a
this case (of the BIVOR IVS failing only the I, teat) the subroutine
goes to the next stop by deleting the rightmost IV from the model.

If the IVS of the present step is accepted, the operations
of the next paragraph are performed.

(A.c) If the IVS of the present step was accepted, i.e.,
passed all five checks describez' in paragraphs (A.a) a•d (A.b) above,
the additional regression sums of squares (a bvI/cv,) are computed for
all "I's not yet ordered in the Itrmp in which BIVOR L4 presently
opeating. If there are more than one of these addititmal regtession
sums of squares, the minimum is found and the IV which I, d to it is
ranked as the least important one at this step. Stice the accepted
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IVS of this step reprut:sents the first accepted rerun of BIVOR, it is
given the complete printout, including predictions, prediction errors,
and the normality test. BIVOR then goes to the next step (if any), as
described for this case in the next paragraph (B).

B. If the main run and/or the IVS of any previous step
has been accepted, BIVOR goes to the next step by computing the
additional regression sums of squares for all IV's which have not
yet been ordered in the group in which BIVOR is presently operating.
The values are compared and the IV which led to the minimum additional
regression sum of squares is deleted from the model. The matrix A of
this new IV$ is inverted and the determinant, R2 , s2 , and I. are
computed and the corresponding tests are performed as described in
paragraphs B, D, E, F, H, and I of Section VI.2.a.(2). (If the option
described in paragraph C below is chosen, the tests on the elements of
I. are terminated with that rerun in which all absolute deviations of
the matrix elements are - I(1) for the first time.) - This BIVOR rerun
is given a full printout, including the predicted values, prediction
errors, and normality test if this option is exercised for reruns. The
BIVOR ordering is terminated when an IVS arrived at contains only one
independent variable.

C. If the option to discontinue the identity matrix
checks in BIVOR is used (i.e., I8ID z I on Card I'ype 2), then the
identity matrix is printed for the first BIVOR rerun in which the
absolute values of all deviations are < I(1), together with the state-
ment "DEVIATIONS OF ALL ELEMENTS OF THE IDENTITY MATRIX SMALLER THAN
I(1) .... RUE' ACCEPTED. NO LDENTITY KATRLX CHECKS WILL BE MADE ON
SUBSEQUENT BIVOR RULS." Accordingly, for ensuing reetuns in a BIVOR
.equence the identity matrix is not computed and no vhecking is done.

"The purpose of this option in BIVOR i: to save computer time. Since
each subsequent BIVOR IVS contains only a subset of the independent
variables c ontained in the madel of the rerun in which the checking
ceased, the assumption is made that, in the great majority of cases,
in all subisequent BIVOR runs all absolute deviations of the elements
of the identity matrix would be 1(1).

V-.3 Printouat

In this section the general formulation .-f the printout is
given, supplemented by commmnts when considerea neceasaty for clari-
fication. (TMw commnts are contained in Section VI.3.V.)

VI.1,* Pormulatig~i-of PrintouS

This section contains the alg1ebraic tormulation of the
printout of 4=1CA. The printout for one regression problem is
divided into four partst
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(1) Basic Infor.nation

(2) Main Body

(3) Analysis of Variance Tables

(4) Final Comprehensive Analysis Table.

The "Basic Information" part is printed enly once per regression problem
and contains

(A) a printout of the problem parameters input or Card
Type, I - 6,

(B) the data matrix, and

(C) the summation matrix.

The second part, the "Main Body" prinrout, conains

'A) all intorn~ation pertaining to the mat.-ix inversio:i,

(B) various statistics

(C) preklicted vulues, prediction errots, normality test,
and a~erages, and

(D) predicted values and prediction standard deviations
at selbected input and/or synthetic design points (optional).

The main body is printed for the main run and for each rerun, except for
specific options which are not called oc cannot be called for a rerun.
The thi.-d part contains the "Analysis oi Variance Tables" for the main run
aid for all reruns the "Final Comprehensive Analysis Table" is printed
as t.±e fourth and last part and cortains information for hand selected
rerur's and Zc: IVOR and/or BIVOR, should any of these options be exercised.
All wording whiLch is shown in capital letter, is actually printed by
the, program; all ucrments or general formulations printed in lower case
lurte s ad3 put ý parentheses are either not printed at all by the
prograr, or not printed in this form.

The comments on the prirtout formulation are given in the
next section (V'.3.b).
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VI.3.b Comments on Printout

The comments in this section refer to the algebraic
formulation of the printout as giver in the previous section. The
page numbers referenced are the page numbers of that printout. In
some instances the possible use of the printed information is discussed
inasmuch as this has not been done before.

VI.3.b.(l) Basic Information

A. Problem Parameters (page 87). The page is

headed by the problem identification as given on Card Type I. This
identification is repeated, at the beginning of certain features,
throughout the program output for ease in identifying the printout
of a given regression problem when several problems have been run
consecutively. Page 87 contains information given on input Card Types
2, 3, 4, 5, and 6, and identifies the problem parameters chosen for the
regression problem. The columns occupied by the program variables in
this printout do not all agree with those specified in the input speci-
fication, Section V.2. For clarity of reading, the entries are spaced
across this page. The spaces filled by X's indicate digits are to be
printed. In the Card Type 3 line, the individual product term
descriptions are separated by slants. Zeros are printed in the spaces
which are not needed to represent the product terms.

B. Data Matrix (page 83). The data matrix printout
is optional (see column 16, Card Type 2) and can be either in the
format 9F13.6 or 7E17.8, whichever is specified on Card Type 2. The
data matrix is printed, if at all, Lor the main run only.

Each row of the data matrix is identified by its
"data point number" (i = 1,2,3,...,n) and consists of the N+l coordinates
of the N independent variables and the dependent variable.

The coordinates of the OCIV's are listed in the
same order as punched on Card Type 8. If generated independent
variables (GCIV's) are used, they follow the OCIV's, and their coordi-
nates are listed in the same order as generated according to Card Type 3.

The data matrix is printed only once per regression

problem (i.e., for the main run) but can easily be obtained for any
rerun by deleting the column, or columns, that. correspond to the inde-
pendent variable(s) which are deleted in the rerun.

C. Summation Matrix (p2ge -§: The summation
Smatrix is printed only once per regression problem; its dimensions are

N42 by N+2. The (Nt L)x(N+l) matrix consisting of the first Nit rows
and columns of the summation matrix is the matrix of the coefficients
of the normal equations for the main run, or the matrix A. Both the
matrix A and the summation matrix are symmetrical.
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The suumation matrix (and the matrix A) of any
rerun can easily be obtained by deleting the row(s) and column(s), which
correspond to the independent variable(s) to be deleted, from the
summation! matrix of the main run.

VI.3..(.2)L Main Body

The formulation of the printout of the main body is
done in terms of K independent variables contained in the model.
Accordingly, with K = N or K = N' -' N this formulation is valid for
the main run or any rerun, respecti.ely. Wherever applicable, the K
independent variables contained in the model are consecutively renumbered
from I to K. if, for example, the first two in.ependent variables of
the main run ar'ý not included in a rerun, then the third IV of the main
rin becomes X'V Number 1 of the rerun.

For reruns the main body is headed "INDEPENDENT
VARIABLE SELECTION ( ) 0 ---------- In the parenLheses "HAND,"
or "IVOR," or "BIVOR," whichever applies, is printed. Zar the main
run there is no identification printed at this place. The IVS is
specifically identified by a series of N+l O's and l's, of which the
first is always a 0. These N-1 digits represent the constant (the
first 0) and the N independent variables, respectively, corresponding
to their order of input. If a specific independent variable is con-
tained in the IVS, a 0 is printed in the place corresponding to this
IV; if it is not contained in the IVS, a I is printed. Thus, when IV
Number . (G = I,...,N) is contained in the IVS, digit number '-l from
the left in this identification will be a 0. Because the constant
(IV Number 0) is always contained in an IVS, the first digit is
always printed as a 0. The IV's not contained in an IVS (which are,
accordingly, represented by I's), are often referred to as "deleted"
IV's, that is, as IV'b "deleted from the model." - The IVS identif.t-
cation is repeated at varieus other places of the prLntout, when
appropriaLe.

A. Matrix Inversion (,ageo 89 and 90). The KATRIX
INVERSION EVALUATION T12E includes the time required to invert the
matrix, compute rite detcrminant and solve the set of the normal
equatio,•,. The main run is numbered 0, the first rerun 1, the second
rerun 2, etc. The printouts of the matrix inversion evaluation tim
and of other running times were originally includid for a timc aLudy
which resulted in the time formulae given in Section VI.4. The running
timn, printout% have been left in the program as a convenience for the
user.
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The DETERMINANT of the matrix A may be printed
in the F format or the E format depending upon the magnitude of the
value of the determinant. If the determinant is negative or equal to
zero the statement "MATRIX FAILED TO INVERT" is printed. (See Section
VI.2.a.(2)1)

The elements of A-' i.e., of the INVERSE OF
MkTRIX A, are denoted as cvv, (v = 0,1,...,K; V' = O,1,...,K). The
inverse ratrix should be cymmetrica], i.e., cvv° = cvI, but is sometimes

not because of comp.itational inaccuracies. Its dimensions are (K+l) by
(K+i).

For further statements concerning the failure of
the matrix inversion see paragraphs D, E, and F of Section VI.2.a.(2).

The SOLUTION TO S1IMULTANEOUS EQUATIONS is the
vector of the K4I1 regression coefficients bv, v = 0,1,...,K, with

bv = Z c~vv Evoy.

The elements of the calculated IDENTITY MATRIX
(I1,) are obtained by multiplying the inverse matrix A-' by the matrix A,
i.e., I. = A-'A. The dimensions of I, are K+l by K+I.

For possible printouts regarding the magnitude of
the elements of the celculated identity matrix see paragraphs H and I
of Section VI.2.a.(2) and Section VI.2.d. When the statement "DEVIATIONS
OF ALL ELEMENTS OF THE IDENTITY MkTRIX SMALLER THAN I(1) =........ RUN
ACCEPTED" is made, the identity matrix is not printed.

B. Various Statistics (paa__90). The STANDARD
DEVIATION OF (regression) COEFFICIENTS,

are always consecutively numbered as described at the beginning of this
section (VI.3.b.(2)). No. 1 is always the standard deviation of bo.
In the main run, the standard deviation identified by the number 3, for
example, is the standard deviation of the second regression coefficient,
b:,. In a rerun, the standard deviation numbered 2, for example, may be

the standard deviation of the regression coefficient of IV No. 3 if IV's
No. I and No. 2 (in the original model) have been deleted for this IVS.

The 5 other statistics are denoted elsewhere in
the printout formulption and at various places of the report, as
follows:
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RESIDUAL OR ERROR SUM OF SQUARES = SSE

TOTAL SUM OF SQUARES ADJUJSTED FOR THE MEAN = ATSS

REGRESSION SUM OF SQUARES (due to K IV's) ADJUSTED FOR THE
MEAN = ASSRK

CORRELATION COEFFICIENT = R

SQUARE ROOT OF PESIDUAL VARIANCE = s

Notice that, besides SSE, ASSRK, and R, also
the standard deviation, s, is redefined in each run (with K independent
variables contained in th'Ž model) and is the basis, in that run, for
the computation of the standard deviations of the regression coefficients,
the normality test and the prediction standard deviations at selected
input and/or synthetic design points.

C. Predicted Values, Prediction Errors, Normality
Test, and Averages (pages 91 and 92). For each of the n input design
points the PREDICTED VALUE (?7) is printed, and similarly the PREDICTION
ERROR (6) as obtained by subtracting the predicted value from the
actual observation of y. The number of the input design point
is also printed and is referred to, in the heading of this printout, as
ITEM NUMBER.

The CHECK ERROR SUM OF SQUARES,

n K
-7 FyI - E bv xy ]2,

i=l \=-0

should equal the Residual or Error Sum of Squares (SSE). Any
discrepancy between the two is an indication of computer inaccuracy.
(See paragraph C of Section VI.2.a.(3).)

The printout format for the predicted values and
for the prediction errors is affected by the value of NDPO (column 16,
Card Type 2). If F'3PO~i, these values are printed in the format 2F15.6;
if NDPO=I, they are printed in the format 2E15.6.

The features of the PREDICTION ERROR FREQUENCY
DISTRIBUTION are explained in detail in paragraphs D and E of Section
VI.2.a.(3). The bar chart give's a graphical representation of the
distribution of the prediction errors. Each prediction error is
represented by an X. Should the number of prediction errors in any
interval be greater than 60 (thereby exceeding the space provided for
the X's), an asterisk is printed at the end of the 60 X's. For the
purpose of easier reading, the bar chart is printed to the right of a
column of "I"s, one "I" for each of the 30 intervals.
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The entries for the CHI-square contribution, the
OBServed FRequencies and the EXPecteD FRequencies are discussed, together
with the establishing of the m new intervals, in paragraphs F and G of
Section VI.2.a.(3). In paragraphs E and H of that section the checks
are discussed which lead to t he possible printout "CHISQUARE COULD NOT
BE COMPUTEDo"

The AVERAGES OF INDEPENDENT VARIABLES AND
DEPENDENT VARIABLE are printed only once per regression problem and
are numbered, accordingly, from I to N+l, such that the average of the
dependent variable is numbered N+l.

D. Predictions at Selected Input and/or Synthetic
Design Points (page 93). Predicted values and standard deviations at
selected input design points and/or synthetic design points aie
optionally computed and printed for the main run and hand selected
reruns only (see Card Type 2, columns 8-13). They cannot be obtained
for IVOR or BIVOR reruns.

The coordinates of the OCIV's for the SELECTED
INPUT DESIGN POINTS and/or the SYNTHETIC DESIGN POINTS are printed for
ease in identifying which points were selected and/or specified,
respectively. In the general formulation, the selected input design
points are renumbered 1 ...... , q) ..... , Q; whereas the synthetic
design points are consecutively numbered Q+l, .... , q.... ., Q.
The coordinates are renumbered 1', 2', ... in order to indicate that
these are the coordinates of the OCIV's contained in the IVS of the
run.

For each of the design points, selected or
synthetic, the PREDICTED VALUE, ?( ,), and the PREDICTION STANDARD
DEVIATION FOR THE PREDICTION LINE, s(p), or the "REDICTION STANDARD
DEVIATION FOR INDIVIDUAL OBSERVATIONS, s('P), a:- printed. The index
"(p)" refers to the number ("(q.)" or "(q')") of the point in
the set of the OCIV coordinates printed previously and is given under
the heading ITEM NUMBER.

Either s(,) or s(',), but not both, can be
obtained in a given problem. (See Card Type 2, column 14.) Should,
however, both standard deviations be desired, the one that is not
printed can obviously be obtained as follows:

If s(;) is printed: s/') = ;))2 + S2

If s(',) is printed: s(,) = /(s('P))• -s2
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(Note: The standard deviations s(,) and s('p), as given in the printout
formulation, are actually computed by the program in the "adjusted"
form, i.e., for example,

K K
s(p) = s _ + Z cvC' (xv(c) - xv)(xv(p) - iv-),

n v=- vL1

where 1 , n
iv = nEov = n 2 XV1.)

The standard deviations will be useful if one
wants to construct (l-ce)% confidence limits, L for the prediction
line, i.e.,

L1=a P) s(t- n-K-i)2

or (1-a)% "tolerance" limits, L1'-a,(p), for individual future observations,
i.e.

2

The synthetic design point feature can also be
useful just for obtaining the predicted values of the regression
equation for design points other than those originally input. In
other words, the feature can be advantageously applied for interpolation.

At the end of the "Main Body," the computer time
required to perform all of the calculations for this run is printed:
"RUN (number) TOOK ....... SECONDS." The main run is identified as run
0, the first rerun as run 1, etc.

VI.3.b.(3) Analysis of Variance Tables

For each run (main run or rerun) an analysis of
variance table (page 94) is printed. The essential statistics of the
run are given in analysis of variance form, including, at the bottom,
the estimated regression equation for that run. The terms contained
in these tables are taken from the results of the computations
previously performed. The definitions of the terms are given in the
"Various Statistics" part of the Main Body, see paragraph B of Section
VI.3.b.(2). The two mean squares ("MS") and the F value are computed
specifically for this table.

It must be emphasized that each analysis of variance
table has its own error term based on n-K-i degrees of freedom. The
two blank rows, each headed by the word "REGRESSION," are available
for convenience in case the user wishes to calculate (by hand) a main
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theorem F value (III-l) for testing a specific hypothesis. For an
example of this see the corresponding printout of the Example Problem,
Section VI.5.

The subscripts of the independent variables in the
regression equation are the original numbers of the IV's as input for
the main run. (This is different from the Main Body in which the K
IV's in the IVS are renumbered from I to K.) For example, if IV
Number v is not included in the IVS, the term with X(v) is not present
in this printout of the regression equation.

VI.3.b.(4) Final Comprehensive Analysis Table

The Final Comprehensive Analysis Table (page 95) gives
the F values (III-1) of the main theorem FOR REGRESSION ON DELETED
VARIABLES for each rerun, together with the COEFFICIENT OF DETERMINATION,
the 14UMBER ("NO." = DF = DEGREES OF FREEDOM) OF DELETED VARIABLES and
the identification of the INDEPENDENT VARIABLE SELECTION. Although
implied by the application of the main theorem, it is emphasized that
all F values are based on the error term of the main run with n-N-I
degrees of freedom. The table is also a very convenient means to
show the order in which the independent variables are ranked by IVOR
and/or BIVOR if these options are exercised. There is a certain
danger of misinterpretation of the BIVOR final comprehensive analysis
when a BIVOR independent variable selection is rejected only on the
grounds of failing the identity matrix checks. In this case the right-
most IV is deleted from the model, which might appear as a genuine
BIVOR ordering of this independent variable if one judges from the
final comprehensive analysis table only. For mire details see para-
graph (A.b) of Section VI.2.d.

Should th'ý Final Comprehensive Analysis not be
printed (but reruns are present), the itatement "NO FINAL COMPREHENSIVE
PRINTOUT SINCE MATRIX FOR MAIN RUN COULD NOT BE INVERTED" is given.

VI.4 Runnina Time Formulae

The formulae of this section give the approximate times (in
seconds) which are required by the IBM 7030 STRETCH computer to execute
the various parts and options of the DA-MRCA program. In these formulae
the time, T (in seconds), is expressed in terms of the input parameters
N, N', IQ, and n, where

N = number of IV's contained in the model of the main run,

N' = number of WV's contained in the moidel of any (hand selected)
rerun,
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IQ = number of IV's to be ordered by IVOR, and

n = number of data points input.

The formulae are based upon the results of a time study in which
a series of regression problems was actually computed by the program.
In this study, each regression problem represented a unique combination
of the values of, at the m3st, three of the input parameters N, N', IQ,
and n; and from each problem the time(s) required for the computations
were recorded. The ranges of the four parameters were taken, in the
time study, as they are iikely to occur in actual regression problems.
N and N' were varied over the full range, that is, up to the capacity
of the program which is N=50 independent variables. IQ took the values
2, 4, 8, and 16; and the numbers of data points, n, were 60, 120, 240,
and 480.

Then DA-MRCA was used to fit polynomials in N, N', IQ, n (as
applicable) to the responses, T, i.e., to the actual running times
observed. (In terms of the present report, T was the "dependent"
variable and N, N', IQ, and n were the "OCIV's.") As a matter of
fact, both IVOR and BIVOR were employed to evaluate the most efficient
polynomials for the prediction of the running times.

The coefficients in .hese polynomials (i.e., the "regression"
coefficients) were rounded such that the formulae give, in general, a
safe upper limit for the running times.

Little is known about extrapolation with respect to n, the number
of data points. However, since 4 points have been used within the range
of the study (0 - n 480), thus allowing a 3rd order polynomial in n
to be fitted, some extrapolation should be permissible.

The formulae are as follows:

a. Time (in seconds) for the main run, excluding the option
for predicted values and prediction standard deviations at
selected input and/or synthetic design points:

-5n,T1 : -"N- - -n (VI-18)
1000 

10001

b. Time (in seconds) for one hand selected rerun with N' IV's
contained in the model, excluding the options for (1) predicted
values, prediction errors, and the normality test, and (2) pre-
dicted values and prediction standard deviations at selected
input and/or synthetic design points:

T2 = UN')2  (VI-19)
1000

(T2  17 seconds for N' = 49)
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c. Time (in seconds) for the option for predicted values,
prediction errors, and the normality test for one hand selected
rerun:

T3 = 0.7 nN' (VI-20)1.000

d. Time (in seconds) for the Final Comprehensive Analysis
computations for M hand selected reruns:

T4 = M (VI-21)
2

e. Time (in seconds) for one IVOR sequence in which only the
first IQ most important IV's out of N are ordered, including
the computations for the IVOR Final Comprehensive Analysis and
excluding the main run and the option for predicted values,
prediction errors, and the normality test:

T5 = 2 + 8iQ00N (VI-22)

1000

(Ts = 1002 seconds for IQ=N=50)

f. Time (in seconds) for one BIVOR sequence in which all N
IV's are ordered, including the computations for the BIVOR
Final Comprehensive Analysis and excluding the main run and the
option for predicted values, prediction errors, and the normality
test: 2N3

Tr = 5 + -2 
(VI-23)

1000

(T6 = 255 seconds for N=50)

g. Time (in seconds) for the option for predicted values,
prediction errors, and the normality test in one IVOR sequence
in which only the first IQ most important IV's out of N are
ordered:

T -- (IQ-l) [I + 0.53_n (N+l) (VI-24)
1000

h. Time (in seconds) for the option for predicted values,
prediction errors, and the normality test in one BIVOR sequence:

(N+l) [FI - L. 35n (LN+- 1 (VI-25)
1000 

(

Some discussion of these formulae seems to be appropriate.

TI, Tý,, 'uid T, each contain a constant term which, although of
lesser importance, was not considered small enough to be neglected.

In T~tt, Lcrm 5n should probably be subtracted from 8 only ifIn t tt~ •.rmT•O-7
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n is smaller than 500 and be disregarded othe:wise. (TI as given in
(VI-18) has its maximum at n=800.) Since the polynomial was fitted
only for the range 0 < n -< 480, this rule seems to give some safe
margin for extrapolation beyond n=480, and the formula would read,
for these larger values of n, as:

T= 2 + 8nN
1000

For obvious reasons, only TI, T3 , T7 , and Ts depend upon n,
the number of data points input, while the other 4 time formulae do
not contain n. For T2 , T5 , and TL, the maximum numerical values are
given, in order to indicate the speed of the program with respect to
reruns.

The comparison of T5 and Te shows that a full IVOR sequence (with
IQ=N) takes approximately 4 times the time of a full BIVOR sequence.
Naturally, T.-. is strictly valid only for IQ <- 16; however, it can be
assumed that it is approximately valid also for the whole range, i.e.,
IQ • 50.

T6 and T,7 were obtained without the grouping of IV's in IVOR and
BIVOR. This means that, if grouping is applied in these options, the
running times will be less than given by T6 and/or T,.

Obviously, T¶. and T; are identical for IQ=N.

No formulae have been evaluated for the option to compute
predicted values and prediction standard deviations at selected input
and/or synthetic design points.

The actual running times of the various parts of the example
problem in Section VI.5 may serve as examples of the application of
the formulae. In the example problem, the parameters take the
following values:

N =9

N' 3 (in M=l hand selected rerun)

IQ = 4

n = 20

This gives the following times:

a . T, 2 + i 2 2 F8 _( (2 )3 4
2 + 1000 18 - ] ffi 3.42

(The actual time for "RUN 0", including predicted values and
prediction standard deviations, was 4.03 seconds.)
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b. T -7 _2 = 0.06
1000

C.T 3  = 0.04
1000

(T2 + T3 = 0.10, but "RUN 1" included predicted values and
prediction standard deviations and actually took 2.10 seconds.)

d. 1
T4 = 2 = 0.50

e. Ts = 2 + (8)(42)(9) = 3.15
1000

f" (2) (9%)
Tr = 5 + = 6.46

1000

g. T7 = (4+1) F1 + (0. 3 5)( 2 0)( 9 +4)] = 5.35

1000

h. T a = (9+1) El + (0.'35)(20)(9+ 1) 10.70
1000

This gives a total of

8
E T. = 29.68 seconds.

j=1

The actual "TOTAL PROBLEM RUNNING TIME" was 29 seconds. The latter
time included the predicted values and prediction standard deviations
at 2 s;elected input design points and 3 synthetic design points in the
main run and in the only hand selected rerun, which seems to compensate
for the time saving in IVOR and BIVOR due to the grouping fvature as
applied here but not considered in the time formulae.

VI.5 Example Problem

The example regression problem contained in this section is
given in order to illustrate the various capabilities of the DA-HRCA
program and to exhibit a sample of the program output.

The data of the example problem, as listed in the table below,
was taken from Duncan r19591, p. 697. This was done in preference to

fabrication of artificial variables and data, and the example was
selected as a representation of a typical regression problem.
(Naturally, no attempt is made to find a practical solution to any
aspect of the general ballistic problem.)
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There are n=20 data points in the problem. Each one consists
of (a) the coordinate of the dependent variable, y = "Ballistic Limit",
which is a measure in ft./sec. of the projectile velocity required to
penetrate armor plate; (b) the coordinate of the first OCIV, x, =
thickness of plate in inches; and (c) the coordinate of the second
OCIV xp = Brinnell hardness number of the plate material.

y xl x

Ballistic Limit Thickness in Brinnell
in Feet/Sec. Inches Hardness No.

927 .253 317
978 .258 321

1,028 .259 341
906 .247 350

1,159 .256 352

1,055 .246 363
1,335 .257 365
1,392 .262 375
1,362 .255 373
1,374 .258 391

1,393 .253 407
1,401 .252 426
1,436 .246 432
1,327 .250 469

950 .242 275

998 .243 302
1,144 .239 331
!080 .242 355
1,276 .244 385
1,062 .234 426

The input prep, ration ior the example problem, based on this
data, is exempltfed in Section V.3.

The GCIV's generated are xlx,. x; 0, xtx., x ~xz . x, and x;.
Both ranking options, IVOR and BIVOR, are exercised. There are M1Z2
groups of IV's spec ified in IVOR: the two OCIV's x. and x., are in the
first grinp and the 7 GCIV's are in the second group. Only IQu4 IV's
are to be ranked. Under the restriction due to grouping, these 4 IV's
will include the two rCV'1A of the first group (to be ranked among
themselves) and the two most important GCIV's of the second group. In
BIVOR, there are MrA-3 groups: the two OCIV's are in the first group.
the three GCIV's of second order are in the second group, and the four
GCIV's of third order are in the third group. For the other specifi-
catfbns see Section V.3.
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Pertinent comments in handwriting are added to the computer
printout exhibited. Due to space limitations the printout is not
complete, some printout having been deleted. Whenever this applies,
an appropriate comment is made.

The two IVOR analysis of variance tables exhibited are used to
show the type of hypothesis testing which can be conveniently achieved
with these tables. The example null hypothesis is that fitting x,
(plate thickness) in addition to x2 (Brinnell hardness) does not
significantly reduce the error sum of squares. This hypothesis is
rejected at the 0.05 level of significance, which implies that
including x, in the model in addition to x2 does improve the fit
significantly.

On the page where the final comprehensive analysis table is
printed some interpretation is given of the rankings of the IV's
resulting from IVOR and BIVOR. The IVS column is re!.,ated in hand-
writing in order to clearly identify the IV',- additiiia!li included
(symbol "0") and deleted (symbol "I") in co;i3ect.tcm steps of IVOR
and BIVOR, respectively.

If the analyst wants to determie a "significant model" from each
of these rankings, he may choose a s'gnificancv level for the F value
("for regression on deleted variables") and determine the model
accordingly. The analyst must be aware that such a model may depend
upon the grouping of the IV's. F Jr example, in the IVR ranking of
the present example, any significant model including any IV of the
second group must necessarily also include the two OCIV's. It could
be imagined that without gr.)uping, one of the two OCIV's might not
have been considered part of the i~igniiicant model.

With P=0.05, say, as the chosen significance lcvel, the
"significant models" from the two rankings are determined as fol lv'.
The last and first significant F value in IVOR and SLYOR, respectively,
is F. z 3.384 with 7 and 10 degrees of i'oek*, (Tht tabled F value
for 7 and 10 degrees of truedom at t•e. 0.05 significanvo ievei is 3.14.)
This leads to a "significant moidel" frtn. IVOR which inclides xa, x2 , and

with an associated cot.Ifi.i.ent of determination (K) equal to 0.76.
The "significant m,)deI" troi BIVOR includes xý., x, And x., with R•
0.75. Thus the two "significant wodels" diffi.r only in their least
important IV's, which might be due to the different groupings used in
IVOR and BIVOR. (Because of the groupinig in BIVOR, xý'x;ý had t be
deleted in one of the fir.•--. four steps.)

for a comparison ot the &%tual times usci by N-MRCA to compute
(and print) the various parts of the problem, with the tiuws predicted
by the forwAlat: given in Section VI.4, ice the end ef that section.
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VII. FAILURE ANALYSIS

This chapter is concerned with failures which may occur in the
use of the DA-MRCA program. In this context, a "failure" is defined
in a very broad sense: It is meant to include all cases in which the
user receives an output from the program which is principally different
from what he expected to receive and what he was justified, from his
own good judgment, to expect.

VII.I Classification of Failures

The program user probably will encounter cases in which the
desired results of the regression analysis cannot be obtained in
specific runs. The program will indicate this failure (a) by stating,
in some form, that the inverse of the matrix of the normal equations
could not be obtained, or (b) by making a statement that the calculated
identity matrix failed the accuracy check on the main-diagonal element
deviations from 1. (For details about the statements see Section VI.2.)
Sometimes an inverse is obtained by the program although the user knows

that the matrix is singular. This type of failure, however, should
always become obvious by the accuracy checks on the identity matrix.

In this chapter the above indicated failures and their causes,
as far as they are known to the authors, are analyzed and some
corrective measures are discussed which the user might apply in order
to obtain the desired problem solution. It can generally be stated
that the failures are caused by inherent computer inaccuracies. The
only exception is when no inverse is obtained because there are unknown
linear dependencies among the rows or columns of the matrix of the
normal equations.

The chart given on the following page represents a classification
of possible failures and their causes. The chart should be self-
explanatory; the causes as indicated in the appropiiate boxes are defined
and discussed, along with some corrective measures, in Section VII.2.
The authors do not claim that the list of causes is complete; however,
all causes known to the authors are given.

In the main area of failures, where the matrix is expected to
invert and the calculated identity matrix is expected to pass the
accuracy checks (first two rows of the chart), the analyst will be
unable to readily identify the cause(s) of the program failure since
he cannot be certain that theoretically there is a solution. However,
by following the suggested corrective measures to be discussed, he
may be able to btain a solution and thereby to identify the cause(s)
of the original failure.
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The user of the program might ask why he should encounter thei
case in which the matrix is not expected to invert (last row of the
chart) when in fact theoreticall.y there is no solution but the program
yields an inverse. (Such an inverse, however, will be identified as
fictitious by the inaccurate identity matrix.) This case may indeed
occur, for example, in the main run, when the analyst specifies a
series of feasible independent variable selections (by hand) from an
original set of N independent variables where N is larger than or
equal to the number, nN, of distinct input design points.

It is important to note that obtaining an inverse in such a
situation constitutes, from the analyst's point of view, a failure
with respect to what should be expected from the program. The event
of obtaining this kind of fictitious inverse, therefore, has its
proper place in the failure chart.

Failure Chart*

Matrix inverts but Matrix does not

identity matrix invert

fails accuracy
check

Analyst expects Theoretically Cause of failure:
the matrix to there is a
invert and the solution Limited computer accuracy

identity matrix
to pass accuracy Cause of failure: Cause of failure:
check (since Theoretically Non-obvious Nun-obvious
there are no there is linear dependencies linear dependencie:;
obvious linear no solution plus
dependencies) truncation errors

Analyst does
not expect the Theoretically Cause of failure:
matrix to invert there is truncation errors
(since there are no solution
obvious linear
dependencies)

* For the definitions of the terms used in the Failure Chart see the
remaining sections of this chapter.
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VII .2 ii u:i .i-n of FaiIt_-,. _ ý. _ oSo e Correct ivt Measures

And Ex:p|e,

In this s.ction the three tailure c ;uL, *,., i e., limited computer

accuracy, linear dependencius, and truncaLion crrors, will be discussed

and some corrective measures and e.amples bt given.

VII.2.a Limited Computer Accuracy

As is well known, no computer, large as it may be, is an

"ideal computer," that is, a computer with absolute accuracy. The
inaccuracy of the IBM 7030, for example, with its error in the four-

teonth decimal digit (when using single precision as done in the

present program), is large enough to effect the matrix inversion

calculations to the extent that the inverses of large matrices might

be worthless. Without presenting the details of the error propagation

as present in the modified Gaussian elimination method used in the

program, it can be stated that most errors are introduced by the

subtraction of large numbers from other large numbers where these

numbers differ only in the last few digits. These digits may well be

hevond the last accurate one, i.e., beyond the thirteenth digit at

the start of the calculations. One consequence of this may be, for

example, the appearance of one or more negative elements in the main

diagonal of the inverse, leading to the program statement that an

invwr.4e could not be obtained. Another consequence could be that,

althongh the inverse can be obtained, the calculated identity matrix,

I.. deviates from the true identity matrix such that the accuracy

check-; on the main diagonal elements of . iail. This "limited

computer accuracy" will cause failures most often in polynorial

regression with high order terms contained in the model. At this

point it must be recalled that the criterion by which the program

accepts or rejects a run is dependent upen the analyst's choice.

That is, the pro)gram user ciooses the value of 1(2) which will be ohe

critical valtie not to be exceeded by the deviation (from 1) of any main

diagonal tlemcnt of the calculated identity m-ttrix. (See Section VI.I.b.)

As a corrective rwasure to overcome the failures caused

by the limited computer accuracy the following transformation of the

independent variables is sometimes sufficient:

x-

This transformation, which is often also referred to as "coding" of

the x's, i• estentially a standardizatioo, with centralization effected

by the subtraction of the average, it from the original ob.servatin'i, x,
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and with Iv 1< 1 effected through division by the range R, = x1 &X - x*il.
The transformation will be applied only to the "original" independent
variables (OCIV's), and in polynomial regression, all higher ordef and
cross-product terms (GCIV's) will be generated from the v variables.
(As can easily be seen, if the GCIV's were also transformed, the matrix
of the normal equations would have characteristics similar to those of
a Hilbert matrix.) The transformation has the effect of keeping close
to zero those elements in the matrix of the normal equations which, in
polynomial regression, are sums of odd powers of the v values (Zv 3 

- 0,
for example), or those elements which, in general multiple regression,
are proportional to the covariance of twc uncorrelated independent
variables (Zv2 me 0, for example). The other elements of the matrix,
for instance, the sums of theeven powers in polynomial regression, are
kept small by the transformation because of Iv I< 1. The transformation,
then, results in sufficiently large contrasts among the matrix elements
of now smaller absolute value such that the subtractions mentioned
before can be done with much higher accuracy.

It should be noted that the adjustment for the average
x value as achieved in the v transformation leads to a much higher
computational accuracy than can be achieved by starting with the
regression model (VI-2) in which the independent variables are
adjusted for their average values.

In case of polynomial regression the v transformation can
become problematic to the program user who needs or wants prediction
equations in the original x space. Only under a rather severe
restriction (to be defined) will the regression sum of squares (ASSR)
due to a group of independent variables in the v space be equal to the
regression sum of squares due to the corresponding group of independent
variables in the x space. Before defining the restriction, a very
simple example is given in order to illustrate the situation. This
example contains only one "original" independent variable, x. Imagine
first that only its squared term (x 2 ) is included in the regression
model. The regression sum of squares adjusted for the mean, ASSR,
due to x2 is:

ASSR(x
2 ) = x2(yy)]2

E (x 2_- )2

Applying the v transformation to x, one gets for the corresponding
regressior sum of squares due to v2

ASSR(V
2 ) _ [E v

2 (y-y-)]
2

E (v2-V )a
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Since v = x- ASSR(v2) can be rewritten asRX

ASSR(v 2) = (x-x-)' (y-Y-•]

S[ ( x -_X -"

Now it can be shown that

ASSR(x 2) 0 ASSR(v 2 ).

For this it is sufficient to show that the two denominators are not
proportional to each other. Indeed, one has

E(x 2 X2 ) 2 = X4 - n______n

= -4+ ,
n

where 8 is not identically zero:

6 = 46E [- (x-')3 + 2i?-' 7- f'] 0.

Imagine next that only the linear terms, x or v, are
included in the two models. It is easy to show that the two regression
sums of squares are now equal:

ASSR(x) = [r- (x-3-) (y-y-) ]2

Z (x-x) 2

ASSR(v) =
11 (v-v-')2

Since v=O, one has

ASSR(v) -R - Z (x--)(y-y-)] ASSR(x).
1• (x-x-)•

Finally, the two regression sums of squares are again equal
when both the linear and quadratic terms are included in the models:

ASSR(x,x2) = ASSR(vv 2 ).

The algebraic proof for this is omitted because of its length.
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More generalLy, iL can .t: demonstrac•d that the respectivu
regression sums of squares in the x and v spact- are equal only when the

polynomial regression models of order k, say, also include all terms
of lower order than k:

ASSR(x,x2 . . ., ,x) = ASSR(v,v,...,v ,v).

This condition is generally also valid for polynomial regression models
in more than one original independent variable. For example, in a
case of two original independent variables, xi and x2 , and a model which
is to include the cross-product term (xIx 2 or vjv 2 ), one has to include
also the linear terms (xi and x2 , or v, and vz, respectively) in order
to have the regression sums of squares equal in the x and the v space:

ASSR(x 1 ,xZ,xIx2) = ASSR(vI,v 2 ,v1v 2 ).

This leads to the following conclusion. When the program user finds,
for accuracy purposes, a need to apply the transformation (VII-I) and
when he wants to keep, with respect to the regression sums of squares,
the relations between corresponding terms of the two polynomial
regression models undisturbed by the transformation, he must follow
this Restriction: A polynomial regression model must contain all
polynomial terms (including the linear terms) which can be separated
as factors from the highest order terms contained in the model.

The program user can easily adhere to this restriction
when linear hypotheses are to be tested by the option for hand selected

reruns, When the user wants to automatically rank the transformed
polynomial terms by IVOR or BIVOR, he can adhere to the restriction by
application of the grouping feature as available in both routines.
For this the polynomial terms should be grouped according to their
powersum which is defined to be the sum of all exponents of the
original independent variables contained in a term. For example, in
a polynomial of second degree in two (transformed) independent variables
v, and v2, there would be two groups in IVOR and in BIVOR: v, and v2
would form the first group with a powersum of I in each term, and v1,

vIv 2 , and v2 would form the second group with a powersum of 2 in each
term. Since the ranking begins in the first group in IVOR and in the

last group in BIVOR, it can be seen that the above restriction is
followed, It is, however, obvious that the restriction is being
followed in an overstrict fa3hion: When in BIVOR, for example, v,

and vIv 2 have been found to be the least important terms in the last
(second) group, v is ranked automatically as the next least important
term. In reality, at this step both v, and v2 should be "admissible"
for the determination of which term contributes less to the regression
sum of squares when contained in the model. Note: In NOVACOM (see
Section 11.3) a BIVOR type ranking procedure can optionally be pecformed
such that at each step all those polynomial terms become "admissible"
for ranking which cannot be separated as factors from other terms con-

Ldilned in the modelI Therefoje, the terms become admissible in the
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desired fashion, that is, according to the above restriction to be
followed when the accuracy transformation

V -x
RX

is applied and when the models in the x and in the v space are to
correspond to each other.

When the program user adheres to the restriction, he will
in fact have a riodel (for example, a significant model) which corresponds,

term by term, to the model in the original space. If it is desired
and feasible, the program user can then retransform the values of the
estimated regression coefficients into the values which the corresponding
coefficients have in the original space. Naturally, the retransformation
is very simple when product terms are not included in the model. In
this case the regression co-fficients of the original space are obtained
by dividing the regressiz•, . efficients of the transfozmed space by the
respective ranges R' In general, however, one would make use of the
model obtained in the transforme: space by transforming the coordinates
of any design point of the original space for which one wants to compute
the predicted value of thei dependent variable and/or confidence limits.

Although the transformation (VII-l),

x-x
V - -X

R X

seems to be the most effective one to increase the accuracy, division
by a constant or subtraction of a constant sometimes is satisfactory.
Division by a constant, that is the transformation v' = X, avoids the
disadvantages which are characteristic of the transformation (VII-l):
The retransformation of the model consists merely of dividing the
regression coefficient obtained in the transformed space by E. In
polynomial regression the retransformation consists of dividing the
obtained regression coefficient of a polynomial term by the corresponding
product of the E values used in the transformation of the original
independent variables. For example, the regression coefficient obtained
for the term

X1 X', 2

El E3 J
is retransformed by dividing by E1 E2.

The effect of the 1 transformation, with respect to
accuracy, is similar to that of the division by R, in the v transformation:

If the value of E is properly chosen, the absolute values of the trans-

formed data can be made to lie betweeti 0 and 1. This can sometimes be
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achieved by choosing the proper power of ten for E, in which case the
transformation can easily be executed by hand. However, this trans-
formation is of little value if all or most of the untransformed OCIV
coordinates are of equal sign. In this case the other simple trans-
formation, i.e., the subtraction of a constant such that centralization
is achieved, is sometimes sufficient. The constant G in this trans-
formation, v" = x-G, should be conveniently chosen close to the
average of the x values, i.e., G should be a "working average." If
it is appropriate to choose G as a whole number, this transformation
also can easily be performed by hand. The transformation x-G has,
however, the same type of side-effects with respect to the retrans-
formation of a polynomial model as were shown to exist for the
transformation x-x

The transformations

X-R Xv = -x and v' g (but not v"= x-G)

can automatically be applied to the coordinates of the OCIV's by the
preprocessor program MTRAN, as was mentioned In Section 11.2. The
output of MTRAN may be on cards or tape Pnd represents the data input
for DA-MRCA, i.e., the information usually puncled on Card Type 8.

The following numerical example is-given in order to
illustrate the effects of the transformation X-Y. The problem con-
tains one original independent variable x with ax9 distinct levels.
In the x space a polynomial of 5th degree was the highest that could be
fitted by DA-MRCA, whereas, after applicacion of the v transformation,

a polynomial of 8th degree. could be obtained. (Naturally in this
example, this is the zero error perfect fit.) The printout shown is
a reproduction of a part of the original printout of DA-MRCA for this
example. The 9 da-a poinLj aie given below, where also the transformed
(coded) x values are shown.

y x V = •

9.5 47.30 -. 45861017
0.6 47.4/ -. 45276825

43.7 54.65 -. 20603285
49.9 54.83 -. 19984729
48.3 bl.90 +.04310804
65.5 64.20 +.1221458
96.4 68.43 +.26"50W67

128.5 70.63 +.34310804
149.1 76.40 +.5 4 13f'98i
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VII.2.b Linear Dependencies

Linear dependencies among all or some of the rows
(columns) of tl,1. ratr!x of the normal equations of a given run will
cause this matrix to be singular and, therefore, fail to invert.
Sometimes a fictitious inverse will be computed by the program because
of the presence of truncation errors, see Section VII.2.c below. In
some cases the analyst will be able to infer, from visual inspection
of the number and the relative position of the n. distinct input
design points, as given in the design matrix, that linear dependencies
are present. These will be referred to as "obvious" linear depend-
encies. They occur, for example, when the analyst includes as many
or more independent variables in the regression model of a given run
as there are distinct design points. For a discussion of some obvious
linear dependencies see the end of this section.

In general, the linear dependencies will be "non-obvious"
and, therefore, unknown to the analyst from visually inspecting the
design matrix. It is in this sense that the linear dependencies are
discussed here as a cause for a failure. The algebraic parts of the
discussion are preseLted in terms of the main run; however, all
conclusions are naturally equally vatid for any rerun.

The matrix A of the normal equations of the main run can

be expressed in terms of the design matrix X as follows:

A = X'X,

with

X01  X11  XV1  XV* ... x*.

Xo N X1g X A "- XVy X 11

where xo,-l. Since

rank (A) - rank [X],,

I must be of rank 1141 in order that A is a non-singular matrix, assuming
that n% a N++6. By definition, X is of rank NIl when no Linear dependencies
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exist among its N+l columns. In other words, as soon as the coordinates

IxI, , x2 ) ".., x., I XN1I of the nN distinct input design points
satisfy the identity

N
E avxv, = 0 [1 - l,...,nN) (VII-2)

with at least two coefficients, av, being different from zero, the rank
of X is smaller than N+l and, thereby, A is singular. In a geometrical
inLii.preLation, tLhe identity

N
E avxv, 0 [i1

v=-O

means that all n,, distinct design points are located on a hyperplane
in the N-dimensional space defined by the N independent variables.
(This hyperplane could have, at the most, N-1 dimensions.) Except
for the cases of "obvious" linear dependencies, the analyst will not
be able to determine, without further analysis, whether or not

the nq distinct input design points are located on a plane in the
N-dimensional space. Should he want to determine this by analytical
means, he would have to calculate the value of the determinant of the
matrix consisting of any N+1 rows of X which represent distinct design
points. This can be a considerable effort. In the present program,
therefore, the detection of this general case of "non-oblious" linear
dependencies is left to the built-in checks for the possibility of
obtaining an inverse and to the checks on the accuracy of the calculated
identity matrix. When "non-obvious" linear dependencies are present
for a given independent variable selection and when a fictitious
inverse is obtained, the main diagonal elements of the calculated
identity matrix will deviate rather drastically from I and the run
will clearly be rejected.

The only adequate corrective measure in the case of
non-obvious linear dependencies is to delete one independent variable
and to try to fit the reduced regression model. As discussed in
Section VI.2.d, this deletion is performed automatically in the BVOiR
option. IVOR, by nature, has an advantage over BIVOR in the handling
of non-obvious linear dependencies and the identification of perfect
fits. Since in BIVOR, indiscriminantly, the rightmost independent
variable is deleted after a run was rejected, this deletion does not
necessarily eliminate the unwanted non-obvious linear dependency. In
fact, there could be many such deletions of rightmost IV's before a
perfect fit is reached by BIVOR. MVOR, in contrast, will select, at
each step, only those independent variables for possible inclusion into
the model whose inclusion will not introduce linear dependencies. By
this technique MVOR is capable of always finding the perfect fit with
the maximum number of independent variab!.es contained in the model.
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Another remark regarding linear dependencies concerns
the situation in which functions of the original independent variables
are added to the model, as is the case, for example, in polynomial
regression. Namely, it is wrong to assume that functional terms can
always be added when there are no (non-obvious) linear dependencies
caused by the original independent variables. The following simple
example from polynomial regression may serve to illustrate this and

the concept of the "non-obvious" linear dependency in general.

Example. Given the following nN= 4 design points in the
plane of the two original independent variables x1 and x2 ,

x -l 0 +2 +3

X2  +1 -2 -2 +1

the regression model to be fitted is, say:

Y = BO + S1 x1 + 02x2 +. 03xI

which with 4 distinct design points should lead to a "zero error
perfect fit." The inclusion of the term x, appears to be feasible,
but it nevertheless leads to a non-obvious linear dependency: the
4 points (x 1 , x2 , xT) are located on a plane in the 3-dimensional
space. As can easily be verified, the 4 points satisfy the identity
of form (VII-2), i.e., the 4 points are on a plane having this equation:

2 + 2x, + x2 - X O.

It is, therefore, not possible to include x2 in the regression model
when x1 and x2 are included.

In the following, some "obvious" linear dependencies are
discussed, two of which are derived from the general case, i.e., by
specifying the coefficients, av, in the identity

N
E avxvt O.
V.0

All these cases can readily be identified from the design matrix X
without further analysis. As has been the case previously in this
section, the discussion of the obvious linear dependencies also will
be presented in terms of the main run, i.e., for N independent variables.
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Some "obvious" linear dependencies:

(1) In the identity (VII-2),

N
E avxv, - 0, 1 = 1,2,...,nN,

v-0

all coefficients av except ao and av* are zero:

- a0- = constant.av,

This means that the coordinate xvy* is equal for all n% distinct
design pointc. AV1 

4ndependent variables, xv*, satisfying this
condition must be deleted from the model.

(2) In the identity (VII-2), all coefficients except
av* and av** are zero:

av*xv*t + a.,**xv**t 0,

or

XV*t -av*

- = constant.
xv**t av*

This is the case of proportionality for all nN coordinates xv~* and
xv**t. One independent variable out of each pair xvt, xv** satisfying
this condition must be deleted from the model.

(3) n, s N. This is the case of trying to fit too many
independent variables for the number, r.N, of distinct input design
points available. It will be met mostly in situations where functions
of the original independent variables have been included in the regression
model, as is the case in polynomial regression. The identity (VII-2)
is automatically fulfilled by the n, S N design points since all n%
points are necessarily located on a "plane" in the N-dimensional space
defined by the N independent variables. At least NI-n+l independent
variable(s) must be deleted from the model in order to arrive at a
solution.

f4) This case applies only when functions xv - fv (Is,
$ .0s...) of the original independent variables, sa, are

included in the model, as is the case, for example, in polynomial
regression. It is related to case (3) (n, r N) and defined as follows.
Let the number of distinct values (coordinates) of the original
independent variable as be Ls. The set of all functional terms xv fv
of the model which contain as can be divided into groups such that a
group consists of all those term fv which contain one or more other
variables as* (j*jIj), all in an identical functional form. (The term
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fv in one of these groups need not contain any variable other than z .)
Let the maximum number of terms fy in any group be MN. Then an obvious
linear dependency exists if L3 5 M,.

As a complex and probably unrealistic example. intended
to illustrate the above definition, imagine that the model includes
the following set of 9 terms all of which contain zj(z, 0 z5 . ý zj*):

zj* sin(zl), z,,* sin(2zj), zj* sin(3z,); cos(zj), cos(2z,);
34

zc** cos(zjz5*); Z2** cos(zjzj*); Zj** cos(z z,*); z4** cos(zjz,*).

The first three terms contain zj, in an identical functional form,
namely as a multiplier. The next two terms do not contain any other
variable than z3; and the last four terms each contain z,** in a
different functional form. This makes 6 groups with 3, 2, 1, 1, 1,
1 terms, respectively. Therefore, M5 equals 3. Should the number
Lj of distinct values of zj be smaller than or equal to 3, the
inclusion of the first of the above groups (with 3 terms) in the
model would lead to an obvious linear dependency.

In this case of L, ! M, the identity (VIIo2) is again
automatically fulfilled since the total number n% of distinct design
points will be located on a "plane" in the N-dimensional space defined
by the N independent variables, as can readily be verified. For each
original independent variable Zj for which L, ' 1 j is true, at least
as many terms containing zj per group must be deleted from the model
such that, at the most, L.-I terms per group will remain. in the above
example, deletion of zj* sin(3a5 ), say, would eliminate the obvious
linear dependency if L3 is assumed to be exactly 3.

VII.2.c Truncation Zrrors

Truncation errors are, naturally, present in all computations
performed. As indicated before, these errora become particularly
important In one situation, i.e., when the matrix is singular (obvious
or non-obvious linear dependencies being present) and, consequently,
an inverse does not exist. In this situation the truncation errors
sometimes lead to a fictitious inverse which, however, in all cases
should be identified as such by the failure of the calculated identity
matrix to pass the accuracy checks. This fictitious inverse is usually
caused by an element of the main diagonal of the inverse which
theoretically has the value zero but actually equals a small positive
quantity stemming from a truncation error. One can, in fact, construct
very simple cases with singular matrices for which the computer will
obtain fictitious in,.qrses.
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There is no possibility whatsoever to avoid the "failures"
which are caused by these errors when one deals with singular matrices.
The analyst has to rely entirely upon the accuracy check on the calcu-
lated identity matrix in order to be protected from this type of a
fictitious problem solution. In the experience of the authors no
actual case occurred in which the inverse of a matrix known to be
singular passed the identity matrix checks.
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VIII. FORTRAN IV DOCUMENTATION OF DA-MRCA

In previous chapters of this report, references to problem
variables have, in most instances, been made in terms of the general
machematical notation used. However, in the programming and coding
phases of the DA-MRCA program, it has been necessary to redefine some
of these .driables in an acceptable FORTRAN IV variable notation. In
addl-.ion, other variables have required initial definition due to the
storage allocation conventions of the FORTRAN IV language.

Some of thesp FORTRAN variables have been defined in previous
chapters of this r~,ort. For example, variable descriptions are
provide, in Chapter V (INPUT PREPARATION). However, if the reader has
the desire or need to study and understand the FORTRAN formulation of
the program, additional information is required to associate the
mathematical concepts with the FORTRAN IV documentation.

This chapter, therefore, presents the FORTRAN V documentdtion
of the DA-MRCA program in the form of a glossary of program variable3,
flow charts, conversion notes, and a complete listing of the program.

VIII.l Description of Program Variables

In this section are defined the program variables which are
contained, (a) in COMMON storage, (b) in the MAIN PROGRAM¶, and (c) in
program subroutines.

Input variables, indices of DO-loops, most variables defined in
DATA statements, and most arguments in subroutines are not defined here.

VIIIL.a Variables in COMMON Storage

A - an array containing the matrix (A) of the normal equations;
sub-outine GAUSS changes this matrix to its inverse.

AKP - an array into which the array A is saved before subroutine
GAUSS is called,

AVV - an array which contains averages of the independent variables
and the dependent varidble.

AW - an array which contains averages of independent variables in
subroutine PREVAR and which contains the various regression
sums of squares adjusted for the mean in subroutines IVOR and
BIVOR.
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B - an array containing the constants, Evy, of the normal equations;
subroutine GAUSS changes this vector to contain the solution
of the normal equations (i.e., the regression coefficients).

BB - an array which is used to save the constants, Evy, of the
normal equations.

BSDEV - an array which contains the standard deviations of the
regression coefficients.

DETERM - the determinant of A.

ERROR - a variable which is used as an error return from subroutines
ABT and GAUSS and which controls printout in subroutine REDUCM.

IBIDS - a variable which is used in conjunction with IBID to control
the computaticn and checking of the identity matrix.

ICASE - a ccunter for the number of inverse matrices which are printed.

ISKIP - if the main run was rejected for any reason, ISKIP=2; other-
wise ISKIP=l.

ITOTAL - initially set equal to the rank of the matrix of the normal
equations, A, for the main run, this value is later used,
in IVOR and BIVOR, as the upper limit on the number of
independent variables at various steps of these subroutines.

JLIM - a variable which is set equal to IR+l, the number of OCIV's
given as input, plus 1.

KMUM - a variable which indicates step size in the looping used to
read the data input.

KNUM - a variable which is used by subroutine IDIT as the number of
data fields per record and by subroutine BIV0R to indicate to
subroutine CASSR that CASSR is being called from BIV0R.

M - the total number of data points (= n in previous chapters).

Ml - a variable which indicates when the data termination card has
been read.

M4 - a variable which is used to control page headings in
subroutine CMPR.

N - the number of independent variables present in the model at
any step.

NN - the number of independent variables present in the model (at
any step), plus 2.
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NNL - a variable which is used to index the last row and/or last
column of the summation matrix S containing the constants,
Evy, of the normal equations.

NNN - the rank of the matrix of the normal equations at any step.

NNNSAV - a variable which saves the rank of the matrix of the normal
equations for the main run.

NNSAV - a variable which saves the main run value of the variable NN.

NNXA - a variable equal to the main run value of the variable NNN.

NOBS - this variable (EQUIVALENCED to IDG0 in subroutines ABT,
IDENTH, and.PRINTM) is used to indicate the acceptance or
rejection of the identity matrix.

NPED - a variable which controls the predicted value and Chi-square
computations.

RECM - the reciprocal of the number of observations M.

RSSMO - this variable value equals the main run regression sum of
squares adjusted for the mean. If the main run does not
pass the four checks on the determinant of A, R;, s2, and

the cvv (see paragraphs B, D, E, and F of Section VI.2.a.(2)),
this value is negative indicating that no final comprehensive
is to be printed.

S - the summation matrix; the first N+l rows and N+l columns
represent the matrix of the normal equations; the (N+2)th

row and column are the constants, Ev. (v = O,1,...,N), and
E.., of the normal equations.

SDEV - the square root of the residual variance.

SELECT - this variable indicates whether a rerun is a hand selected
rerun, an IVOR rerun, or a BIVOR rerun, for printout purposes.

X - an array which contains the coordinates for each data point.

XD - an array which is used in subroutine PRIVAR to contain the
coordinates of the selected input or synthetic design points
adjusted for the averages of the corresponding input coordinates.

YSDEV - an array containing the prediction standard deviations.

YY - an array containing the predicted values.
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VIII.l.b Variables in the MAIN PROGRAM

IAPE - the actual logical tape number of the tape containing the
coordinates of the data points.

INDX - a variable which is set equal to IR+l. The coordinates of
the first IR independent variables, modified by the independent
variable selection, are printed to identify the selected input
and/or synthetic design points.

KOUNT - counter for the selected input and/or synthetic design points.

HMM - an index used in the coding to reverse the order of input
items in the LOT array.

NSAV - saves the main run value of N.

XIT - the time which is computed by the various timing subroutines.

XYIT - used only as a required argument to the EOF function.

VIII.l.c Variables in Program Subroutines

(1) Variables in Subroutine ABT*

ASSR - the regression sum of squares adjusted for the mean.

ATSS - the total sum of squares adjusted for the mean.

CHI - an array whose jth element contains a contribution to the
Chi-square statistic if the jth interval is the last of a
group of intervals having a total of more than 5 expected
prediction errors. Otherwise CHI(J) = -1.0.

CUHSUM - The Chi-square statistic.

CMPFR - an array whose *th element contains summed expected prediction
errors if the j ih interval was the last of a group of intervals
having a total of more than 5 expected prediction errors.
Otherwise, the contents of CMPFR(J) are meaningless.

COR - the correlation coefficient.

CORSQ - the square of the correlation coefficient (i.e., the coefficient
of determination).

*Note - T. Herring, who coded the program DA-MRCA, named this subroutine

for a co-author of the report.
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EDELTA - the interval size in the Chi-square computations.

ERANGE - the range of the prediction errors.

ESSO - the main run value of the error sum of squares.

ESTEP - an array which contains the upper bounds of the 30 intervals,
into which the range of the prediction errors is divided.

ES2 - the sum of squares of the prediction errors; the check
error sum of squares.

EYYL - the minimum prediction error.

EYYU - the maximum prediction error.

FGRAPH - an array which contains the symbols for the prediction error
frequency distribution bar chart.

FM - a floating point representation of the rank of the matrix
of the normal equations.

FOUT - the F ratio for regression on deleted variables.

IDF - the degrees of freedom of Chi-square.

IFGRPH - the number of symbols which are to be printed on a line in
the prediction error frequency distribution bar chart.

IFREQ an array which contains the frequencies of occurrence of
prediction errors in the intervals delimited by the ESTEP
array.

IOBF - an array whose jth element contains the summed observed
frequencies of prediction errors for a group of intervals
if the jth interval was the last of a group of intervals
containing a total of more than 5 expected prediction errors.
Otherwise, the contents of IOBF(J) are meaningless.

IXMAX - the element number of the maximum prediction error.

IXMIN - the element number of the minimum prediction error.

NRO - the number of independent variables for the main run.

NRl - the number of data points minus the main run value of NNN,
i.e., the degrees of freedom of the error variance.

NR2 - the number of independent variables which have been deleted
from the model.
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SDEVSQ - the residual variance.

SSE - the residual, or error, sum of squares.

SSR - the unadjusted regression sum of squares.

XIT - the time, in seconds, for the execution of subroutine GAUSS.

(2) Variables in Subroutine BIVOR

AMAX - thL maximum ASSR value.

AMIN - the minimum ASSR value.

IDUM - a dummy argument to subroutine CASSR.

IMAX - the LOT array index of that independent variable which is to
be deleted from the model.

ISEE - a variable value which ensures that the identity matrix will
be checked only until an inverse is found whose associated
identity matrix element deviations are all smaller than I(i).

ISTART - a variable value which is used to define the LOT array index
of the leftmost independent variable of a group of independent
variables.

IXMAX - the index of the maximum ASSR value in the AW array.

IXMIN - the index of the minimum ASSR value in the AW array.

JL0T - a variable used to index the regression coefficients and
inverse matrix diagonal elements qhich are due to independent
variables for which ASSR values are to be computed.

JSAVE - the index of the LOT array element which element is to be set
equal to 1 if the matrix inversion is not accepted.

KASSR - a counter of the ASSR values which are computed at each step.

KGO - a variable which indicates the failure of the matrix inversion
in subroutine CASSR.

LAT - an array which holds the LOT array indices of the independent
variables for which ASSR values are computed.

NOBS - a variable which indicates whether or not a matrix inversion
is the first accepted inversion in subroutine BIVOR.
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NQQ - a variable value equal to the number of independent variables
in a group in the grouping feature for independent variables.

(3) Variables in Subroutine CASSR

ASSR - the regression sum of squares adjusted for the mean.

ATSS - the total sum of squares adjusted for the mean.

C0RSQ - the square of the correlation coefficient.

FNNN - a floating point representation of the rank of the matrix of
the normal equations.

SDEVSQ - the residual variance.

SSE - the residual, or error, sum of squares.

SSR - the unadjusted regression sum of squares.

(4) Variables in Subroutine CHISQ

F0 - the actual number of prediction errors in a group of intervals
in the search for a group of intervals having more than 5
expected prediction errors.

FOC - the computed (expected) number of prediction errors in a group
of intervals in the search for a group of intervals having
more than 5 expected prediction errors.

FOMRE - the program looks ahead each time it finds a group of intervals
having more than 5 expected prediction errors to determine
whether or not more than 5 expected prediction errors remain;
if not, then the remaining frequencies are associated with
the preceding group and FOMRE is the resulting difference
between the observed frequency and the expected frequency.

FOT - the total number of (observed) prediction errors which have
contributed to the Chi-square statistic.

JJ - the interval index of the interval which was the last of a
group of intervals containing more than 5 expected prediction
errors.

K0UNT - a variable which counts the number of groups of intervals

having more than 5 expected prediction errors.

PR0BN - the area under the normal frequency function from -a to the
upper bound of any of the various intervals into which the
range of prediction errors is divided.
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PROB0 - the area under the normal frequency function from -- to the
upper bound of the last interval which was the last of a
group of intervals containing more than 5 expected prediction
errors.

REMAIN - the remaining number of expected prediction errcrs.

(5) Variables in Subroutine CMPR

AN - a floating point representation of the total number of data
points.

ESQU0T - the error sum of squares.

FQU0T - the F value for regression in the analysis of variance tables.

IRCT - the number of independent variables in the present model,
plus 1.

IW - an index for elements in arrays which elements are used to
define the variable output formats.

K - the number of independent variables in the present model,
plus 2.

LAST - a variable used in the computation of index values for arrays
which are used to complete the definition of the variable
formats for the printing of the regression equation.

LL - a variable used to control the printing of page hesdings.

NMR - an integer representation of the error degrees of freedom.

OMR - the error degrees of freedom.

R - a floating point representation of the number of independent
variables in the model; the degrees of freedom for regression.

RSQLUT - the mean square for regression.

(6) Variables in Subroutine FIX

LIT - an array which contains a BCD representation of the first
NNNSAV (see Section VII.I.8a) elements of the LOT array and
BCD zeroes for the remaining elements.
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(7) Variables in Subroutine GAUSS

AMAX - the maximum element, of those elements searched, in the
matrix of the normal equations at each step of the inversion
process.

ICOLUM - the column number of the maximum of those elements in
unpivoted rows.

104 - a variable which indicates when no pivot element could be
found at a step of the inversion process.

INDEX - an array containing the row and column numbers of those
elements which are used as pivot elements.

IPIVOT - an array which indicates those rows of A which have served

as pivot rows.

IROW - the row number of the pivot element.

PIVOT - a variable set equal to the value of the pivot element.

SWAP - a temporary storage location used to interchange rows and
columns.

T - a variable which is equal to the successive elements of the
A matrix which are in the same column as the pivot element.

(8) Variables In Subroutine ,MEN'N

AIDENT - the identity matrix.

SUN - a variable which is used to compute the individual elements
of the identity matrix.

(9) Variables in Subroutine 1V1

AMAX - the maximm A£8R value.

AMIN - the minimm ASS& value.

M42 - a variable which indicates the case of a perfect fit.

MAX - the LOT array index of that independent variable which is to
be included in the uodel.

ISTART - a variable which is used to define the L4T array index of
the leftnost independent variable of a group of independent
variables.
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IXMAX - the index of the maxiurun ASSR value in the AW array,

IXMIN - the index of the !ininmun ASSR valuo in the AW array.

KASSR - a counter of the ASSR values which are computed at each step.

KG0 - a variable which indicates that a non-valid ASSR value was
computed by the CASSR subroutine.

KOUNT - a counter of the number of independent variables which have
been "actively" ordered, i.e., ordered in a group of IV's as
long as there is more than one IV left in the group.

LAT - an array which holds the LOT array indices of the independent
variables for which ASSR values are computed.

NUM - a variable which is used to determine when to cease "actively"
ordering independent variables in a specified group of
independent variables, i.e., when there is only one independent
variable left in the group.

T0LSS - a tolerance which is used to establish equality of ASSR
values and hence the perfect fit.

(10) Variables in Subroutine MAXMIN

The variables used by this subroutine have been
amply defined by any one of its calling subroutines , and, therefore,
these variables will nvL be further defined here.

(11) Vardables in Subroutine PREVAR

JJJ - an index which is used to delete independent variables from
the X array.

N N
TRWc - equals F r (~ -i~(c~ -

•HXX - euals £ •cvv,(xv(,ý *;V)(xvl: •'

which is used in the comptAtion of prediction standard
deviations.

(12) Variables Ln Subrgutine PRINTM

AIWINT - the identity matrix.

(13) Variables ta Subroutine RDISK

ISTART - a variable which is slways I more than the number of records
read from tap# or lisk Logical unit 10.
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IWHICH - the number (record number) of a data point which is to be
used as a selected input design point in prediction standard
deviation calculations.

NUMBER - the number of records which must be read in order to position
the storage device so that the IWHICHth data point can be
read with the next READ statement.

SKIP - a variable which is used to skip records.

(14) Variables in Subroutine RDIT

INDEX - the number of an independent variable which is to be used as
a factor in a product term, plus 1.

Ji - the Y array index of the last variable on each card of input.

KK - the Y array index of a product term.

MZ - if a data point requires more than one card or record to
contain the coordinates of the OCIV's, then MZ is used as
a dummy variable in reading those cards or records after
the first card or record.

Y - an array which contains the coordinates of the dependent
variable and those of the OCIV's cs they are read and which
later contains also the coordinates of the GCIV's.

(15) Variables in Subroutine REDUCQ

These variables are described in 3ection VIII.l.a
and, therefore, will not be further described here.
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VIII.2 Flci Charts

a. DA-MRCA SUBROUTINE FLOW CHART

MAIN PROGRAM

LI=SETIT:3K ci E1,O

[SETLKJ PR•EVA*' I RDIT

M10 L5ý SR I i°

vAl I

Z5 [

Iw - ql -l• • m • • • • • • = =
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PROb.A MDNII AION OFTEPROG LEM ENIC

ITART CRD

T TL R WNUMD OFT NDPE N

SETCLCK S- DENT -VAIBE F N. N I= -

T E NPE To 140L MI I
IFIAINý 4'V.PRINT E YP 2ISI N FD 0 MAEN NP ADPR~dOGRAMýDENNTIFCAO FORMT FO REEADNG DA
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E STANDARDDEVITION AR
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STOLREI THE READ N AA
ELEMET CRS (OR THDA2TA
TEMIATRIX ON CAR D)S AND SB

IF~DI TLSS Cir TTHMIERU

NUME IF DATA, 2,OTHNTSE

WA STATH SUB- CAD
ROUTNEDATTAN TIERMNTHEN CAD

TOO EW, ON SUOSEMUNT STRETISDAAPONTO

PF1N "TOOS AE MANRU TO ISTR 4Ist AN+ ROIN A PRN (RNO RIT TI

MANY DATA MAINTS DIAGONL OFTEDT PITA NDCTDB

SUM Os
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34

PRINAS HEAIN EROR SELECTB

ROUTINEOUIN TOT REDRN

POINTS FROM DIS ?0AN

TOCOPUE PREICTED G EAIG

IVP
no ND - es

PRINT HEADING FOR EC
ED INTUT DESIGN POINTS.

SEAETD SINPT TICESIGN
POINTS FROM DISK 10 AND

TOCOMPUTE PREDICTION
VALUES AND PREDICTION
,STANDARD DVIATIONS

IPRINT THEADUNING FOR

SYNTHETIC DESIGN POINTS7

POCALL SUALUTL SURUTN

SDESIN PONT AND TOI 3

COMUTEPRDICIO
VAUSADPEICTION

ISTANDRQ DEIAT58

S TH 
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AT THIS POINT N, NN, NNNJ [ OF IVORGO
ARE REDEFINED., Tl 3

it {REE'I" LOCK AND PRINT I

CALL SUBROUTINE REDUCM HEADING FOR IVOR PRINTUII
TO DELETE ROWS AND
COLUMNS OF THE SUMMATION
MATRIX AND STORE THE / SET IV IDENTIFICATION TORESULT IN A AND AKP. | rVOR'.
REDUCM ALSO PRINTS PAGE

IHEADINGS. F
FWRITE HEADING OR IVOR
ANALYSIS OF VARIANCE
TABLES ON BCD TAPE 9.

I
CALL IVOR TO ORDER
INDEPENDENT VARIABLES
ACCORDING TO DECREASING
POWER OF PREDICTION.I
"CALL SUBROUTINE T4ME TO
COMPLETE TIMING FOR THE
IVOR COMPUTATIONS.

1PRINT IVOR EXECUTION TIlME

IL. VLUE OF IVORGO I
1_12J3 14

IRESET CLOCK AND PRIN T
IHEADING FOR BIVOR PRINT-

!SETVIV IDENTIFICATION T

WRITE HEADING OI
ANALYSIS OF VARIANCE
ITAD ES ON BCD TAPE 9

LI. , 4,.

139

INDEPENDENT VARIABLESACCORDING TO INCRE[ASING
POWER -Of PREDCTI,om

IFROM BCD TAPE 13 0I PRINT.AL S'•UBRUINE TIME ,

S... . COM.,,TE TIING, POO THE

OMLETE TIMING OF FINAL

EIN Vps ANTV. OOXI.
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c. SUBROUTINE ABT

UPON RETURN FROM GAUSS,

CALL NTERAL TIIERB CONTAINS THE SOLUTION
CALLINTEVAL IMERVECTOR X. A CONTAINS A`

CALNERALL TIMEROTN GAUNTVLO

AGAIN TO COMPLETE TIMING OF
MATRIX INVERSION.

PRINT MATRIX INVERSbON TIME.

WAS AN ERROR DETECTED IN
THE GAUSS SUBROUTINE ?

no yes

DETERMINANT j. 0?
no yes

COMPUTEO TO~h SIUMTANOPSUAS

AOJ SIE 
IO THEO ME N1.S )

COMPUTE UNDUTDREGRESSION SUSI QAEAOUMTOF FOUR TE MEAN) FASSR) T

Fc-MPUE E, COR U FVII (COURESO(S).

COMPUTE THEl SQUAR OF THAES

OMTETECOMPTEREGRSSOTSMSOONUAE

ADJUTED OR HE MAN (SSR

ASSR ATSS SSE
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COPT TH RES ID UAL OMUE N
CARANEC THS DE NTTYMARI

CEIDALL VAN~ TRIANCE NGTHVE

OFESLT OE TESDEA IDEIANCE

ELEMIT T THE MOLWW SATISTN S

RESIDUANIAL OF ANERRORISVE ?PSURS

COMPUTE ~ U THMTNDR EAIT"NNLMNTOHEMI
DEVITIOSOFTHE REG RESSION SIA ONA OF THERE INVERSE
EQUATCORRELATIN CMETRCIE X IS) NEA TIE.

VALUEUAR ROF OPD SUROSUAIN RIDNT E TS

hluALL :IDENTM TO COPTE=N

iCAL PRNA OPER.IANT THEi o

RESLT O TH IENIT

- ~ ~ ~ ~ ~ MTI CHECKS..mw..* * ~



NWL REPORT NO. 2035

is THIS THE MAIN RUN?

no yes

CALL SUBROUTINE FIX TO OBTAIN SAVE THE MAIN RUN VALUES

A BCD REPRESENTATION OF THE OF ASSR AND SSE INTO RSSMO

LOT ARRAY WHICH REPRESENTATION AND ESSO RESPECTIVELY.
HAS BLANKS FOR THOSE ELEMEMYS
:OF LOT WHICH DO NOT CORRES CMUETEDGESO
TO INDEPENDENT VARIABLES IN FCEOMPT OFE DEGREESORFAAC

THISPROBEMi~e.COMUTE IT.(NRI) AND SAVE THE NUMBER

RSSMO NEGATIVE ? THE MAIN RUN INTO NAV.

STORE PAGE HEADING, DEGREES
OF FREEDOM OF ERROR VARIANCE

FISýRAAO1. NEATVECOMPUTE THE NUMBER OF DELETED END TABLE HEADING FOR THE

VARIBLE (N2 ND T4E RAIO TINE SCOMARE OHENCOIRELANIBCD

IRN REWIN DISAL LOGICALUNIT
PRINTOUT ~ONAIIN THEC MATPIT DATA POITS STRIH ANRNVLEO

RUN ~ ~ ~ ~~LOiA COULD 10 ABD COVEPUED" THESUREOEH OREA1

6-~ ~ ~ ~ ~~E S A---W STMORE THE SOURE O H OFIINT(OS)O C
OTH RICION ELAORS. jOFIINN2 AE13WT H DNWC

F RSSMO COMP.T ~THE AN LI NBDTP 3 ANRN

CONPTEIN THE INUPTE DAAOUNDS H
30 UWTES ARODUC ZEROMTS

lREAD TH AR&RAY RO DS

PRDCE VAUS 5EITO
,LOICA UIT O~lD OMOT16TH
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45

cOMPuTr T4F FRFrUFNCY OF
OCCURRENCE OF THE PREDICTION
ERRORS IN THE VARIOUS INTERVALS
FOR ALL DATA POINTS AND STORE
THESE FREOUENCIES IN THE
IFREO ARRAY

ADALL SUOROUTINE CHISO TO

ATTEMPT TO COMPUTE THE
CHI-SOUARE STATISTIC

PRINT ERNUERINT PREDICTEIT FLUES,AND
PREDICT ED NICTION ERRORS IN THE EE
PREDICTION ERRORS IN THE FORMAT FOR THE"M"DATA POINTS"4F " FORMAT FOR THE[ "M" I

DA A O NT .PRINT f;HECK ERROR SUM OF ..
SI [ SOU~ARIES AND HEADING FOR THE

FR EPREDICTION ERROR FREUENCY
PRINT CHECK ERROR SUM OFNS

SSOUARES AND EADNG FOREIPITHE PREDICTION• ERROR • '",
FREOUENCY DISTIORUNTION,
PRINT ERANGE IN THE C"FSOR UAT

PRINT PREDICTION ERtROR
FREOUIENCY DISTRIBUTION WlTW4
FREQUENCIES, HISTOGRAMALSO

CHI- SOUARE CONTRIBUTIONS,

AND OBSERVED AND EXPECTED
FREQUENCIES IN THOSE INTERVALS

CONTRIBUTING TO T14E CNt- SOUAQtE

STATISTIC

RI ETURN TO CALLINO
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d. SUBROUTINE IVOR

O SETT 'THE NUMBER OFINDEPENDENT VARIAB3LES
TO BE ACTIVELY ORDERED
([0) TO ILESS THAN THE
NUMBER OF INDEPENDENT
VARIABLES.

WSE THE CAO UNTO ATCEPT

NMEOF INAL CO AREABENSVEO

WHIC HALL LOTN AAYTELEYNT
CORDRESODIN ToEO, iNP.

ARRAYINDEXOP WAS [THINEP MAIN RUN R ACET EAD, SEPU'i
164
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2

J= ISTART U
HAS THE INDEP. VARIABLE
IMPLIED BY "J BEEN INCLUDED

IN THE MODEL ?

N M P NU " INCLUDE THE ,NOEP. VARIA LEIN THE MODEL BYSTTN

_~~~ ~ T - l°M'°l o Iyes nALSBoUTN EUMT

NUMT = -INUM +t 1 -]FORM THE SUMMATION MATRIX

AS INDICATED BY LOT ARRAY.

WERE VALID A

COMPUTED ? CALL SUBROUTINE CASSR TO
no yes INVERT THE SUMMATION

A I A MATRIX, TO TEST THE INVERSION
PRINT"NO VALID AS AND, FOR ACCEPTABLE INVERSIONS,
WERE COMPUTED': TO COMPUTE THE ASSR VALUE FOR

THE (J-l)th INDEP. VARIABLE ANDTO INCREASE KASSR BY 1.

"RETURN MORE THEN ONE 1

VALID ASSR
ys no WA:STHIS INVERSION ACCEPTABLE?

IIXM•A 1 no 7,"

L AT (KASSR) a
CHECK THE ASSR VALUES TO
DETERMINE IF THEY ARE EQUAL
WITHIN A SPECIFIED TOLERANCE. Lf

ALL ASSR VALUES EQUAL?

in* _7ye

1002 2 AT THIS POINT, INDEPENDENT
ULXMAX •1 VARIABLE (IMAX-1) HAS

BlEEN ORDERED.

COMPU7ETHE 1 LA? ARRAY INDEXOF THE M ALXIMU M ASS*;• i.t, J JI
COMPUTE l xM.x. 1J]I

[IAX" L AT (I XIMAX1

CALL SUBROUTINES *EDUCM ANO
AS? TO GIVE FULL PRINTOUT FOR
TINS INDEPENENT VRIABLE
SELECTION.
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FiUNT =KOUNT + 1I
IO=KOUNT ?

no yes

I G002 =100 G . 2TT

VALUE OF 1G02

PRINT "PERFECT FIT. IVS XXXXxi HAVE ALL BUT ONE OF THE IV
IN THE IthGROUP KEN
INCLUDED?

R yes . .1-MI?

no yes

RETURN

ENSURE THAT ALL INDEP
VARiABLES ( V'S) ARE
INCLUDED FOR ALL GROUPS
UP TO,ANO INCLUDING, THE

it" GROUP.

CALL SUBROUTINES REOUCm
AND ASB TO GIVE FULL PRINI
-OUT MOR THE INCLUSION OF J

L THE LAST ORDERED IV OF
T|WE GOh UP.

KOU.. . KSUNT + I0
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e. SUBROUTINE BIVOR

L ,, •o,•:, i
. l

SAVE THE INPUT VALUE OIr
NPED INTO NTAPE AND SET
NPED= I SO THAT CH|-SOUARE
AND PREDICTED VALUES WILL

ALWAYS BE DONE FOR, THE

FIRST ACCEPTED RUN Or BTVOR.1
•;ET KNUM= -I TO INDICATE TO

THE CA.•SR SUBROUTINE THAT
CASSR IS BEING CALLED BY THE'
BIVO• SUBROU .'rINIE.t
SET M4 TO ZERO ASSIGN A !
STATEMENT NUMI•R TO ][SEE" I

WHICH WILL CAUSE BI'VOIq TO I

CONTINUE SEARf'J41NG FOR AN I
ACCEPTED INVIERSlON. X.•...E •SSI•_

1
Iwas Tb• ual• RUN ACCEPTED; 1

l;e rSvlo : I ?

nO J VPt

PRINt -•AC.•; tom t.t Evom"-]
FINAL COMIINIEHENSI' q• ON BCDI

TAPE 13,

l

i 1 ii i

[¢o,,•,•. ,,,s ,O.'AL ,,,,•- 0'1

I.'O•. •'• ,•.<.• or T., r•I

1

I• ,"< com.ss•,•,,•, I

1- J . ... 1
I=0- ! .... . . .. .. . .. .I

I .... ,: , : ! . ...... I

167



IWL REPORT NO. 2035

SCOMPUTE THE STARTING INDEX OF
THE I1ST INDEP. VARIABLE OF THE

rth. GROUP (ISTART) AND THE
LAST INDEX (ITOTAL),

SET NQO = TO THE NUMBER OF
INDER. VARIABLES IN THE I th.

GROUP OF INDEP. VARIABLES.

STATEMB.JTNUMBER VALUE OF rSEE

~I 5i Z7 500
CALL REDL!CM TO FORM THE
SUMMAT;ON MATRIX AS INDICATED
BY THE LOT ARRAY,

CALL CASSR TO INVERT THE
SUPAMATiON MATPIX AND TEST THE

INVERSION.

WAS THIS INVERSION ACCEPTED

lo yes
DELETE THE RIGHTMOST OF THE COMPUTE REGRES~iN SUMS 0OF
UNDELETED INDEP. VAR lADLES. SQUARES ADJUSTED FOR THE

MEAN (ASSRS) FOR ALL
UNDELETED IN,*)EP. VARIABLES IN
THE Ith. GROUP.

is DOI OR THIS RUN REJECTED? I80 BISc3 CAUSES THE PRINTOUT

ye no it NO IDENTITY MATRIX CHECKS WILL
CE MAE ON SUBSEQUENT SIVOR
RUNS" TN SUBROUTINE AST.
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WAS THE SUMMATION MATRIX AT
THIS STEP = TO THE SUMMATION
MATRIX OF THE MAIN RUN?

"yes

CALL SUBROUTINES REDUCM
AND AST TO GIVE FULL
PRINTOUT FOR THIS FIRST
ACCEPTED INVERSION.

IF rBIDS HAS BEEN SET= 3
THEN SET IBIDS = 2.

RESTORE NPED TOITS
INPUT VALUE T
HAS THE NUMBER OF INDEP,
VARIABLES LEFT IN THE MODEL
BEEN REDUCED TOI ?

yes ,no

RETURN LOT ,rMAX) I

NOBSS= 2
N PED = NTAPE

CALL SUBROUTINES ABT AND
REDUCM TO GIVE FULL PRINT-
OUT FOR THIS REDUCED MODEL.

IF IBIDS a3, THEN SET JI8DS:?.j

HAS THE NUMBER OF INDEP.
VARIABLES LEFT IN THIS MODEL

BEEN REDUCED TO I

E RETURN I .iASSIGN A STATMENT W '" ER

SVALUE OFo SW TOIEE.

1

INDPENDENT VARIABLES/IN THE Ith. GRoup, P

S1 no. 1",
i I ,RETURN, j
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VIII.3 Prograuming and Conversion Notes

a. Language - DA-MRCA is coded for the IBM 7030 computer
(STRETCH) entirely in FORTRAN IV. FORMAT and DATA statements assume
eight characters per word.

b. INPUT-OUTPUT Requirements - Three BCD tapes are required
in addition to the system printer output tape. These BCD tapes have
logical unit numbers of 5, 9, and i3 where 5 is the number for the
tape unit containing the coordinates of the OCIV's and of the dependent
variable when this data is on a separate tape; 9 is the number for the
tape unit containing the analysis of variance tables which are computed
in the program; and 13 is the number for the tape unit which contains
the final comprehensive analysis table.

Two disk (or binary tape) logical units are required.
Disk logical unit 10 is used to store the coordinates of the data
points, and disk logical unit 11 is used to store the coordinates
of the OCIV's for the synthetic design points.

The input-output requirements are described for the
STRETCH in the ID subprogram. The program listing contains a listing
of this subprogram.

c. Storage Requirements - COMt40N storage requires 25461
locations. The subprograms, excluding library functions and subroutines,
require 4511 locations on the STRETCH but may require more or less on
other machines.

d. Library Subroutines and Built-in Functions -

ABS - the absolute value function.

EOF - returns a value of .TRUE. if an end of file has been read,
.FALSE. otherwise.

FLOAT - converts an integer to a floating point number.

FREQ(T) - the normal distribution function which gives

f2-' f exp [-y2/2] dy.

jINTVL - measures the interval, in seconds, between the current entry
into INTVL and the exit from the imediately preceding TDC,
INTVL, or SETIT subroutine.

KLIOK - the time in hours/minutes/seconds since the last CALL SETCLK.

170
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MIN0 - chooses the smallest of its fixed point arguments.

SETCLK - used at the beginning of a portion of a program to be timed
by the KL0K subroutine.

SETEOF - this function is necessary in order to use EOF; it causes
E0F to be set to .TRUE. and termination of execution of the
READ statement when an end of file has been reached.

SETIT - see INTVL and TIM .

TIME - measures the usable elapsed time, in seconds, between the
exit from SETIT and the current entry into TMIE.
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VIII.4 Program Listing

T SUSTYPE9PIOD
19 21009SREADER

B9 3100DSPRINTER
a 5D IOD9TAPEe,..EVEN9*SAVE
a REEL*PUL
a 90 IOD#TAPEs,,,ECC*9
a REEL*NULS9
a I~OOOD*lSIoee,704
a IIIOD*DISK*,.100
B 130 IOD9TAPE9*99ECCst
B REEL*NUL.S13

E ND
T SUSTYPE9PORTRAN#LMAP$P9IN NRCAOOOO
C DA-NACA MULTIPLE REGRESSION COMPREHIENSIVE ANALYSIS MRCAOOIO

COMMON A(51S1.SII.SOEV(51).812601),VYI7OOOIX(52),XO(51) NRCA002O
COMM4ON AVV(52I.YS0EV170OO).AW(SI),RECMNFRNVPLNNNSAVNNNeLOT(5I )MRCAOO3O
COMMON NNL9DETERMeNOBS9TOLIITOLI2 *ERROR.NPErD.ITOTAL.N.NDPO.ICASENRCDOO4O
COMMON RSSMO.ISKlP.NJ(25),N4,FIQM(7),KPUMeKMUMMB.MleNO(25).I0 mflcA00rfn
COMMON NNXA.NNSAV.SDEV.AKP(SI.51),BS(52).S(52,523.'GLJ(1OI "RCA0O60
COMMON IN(49,10),IR*IS9MI9JLIM9NNM, TAPE MRCAOO70
COMMON SELECT*1ISIDIBIDS MQCA60e0

C MRCA009C
DIMENSION EYYTOO00hLET(153.II(EEPR(999).PORNIS) MRCAOIOO

C MRCAOI 10
EOUIVALENCES8(1*OZ).IIEEPR(I))IOYSOEVeEYY).(IC*SE.IRUN) '4RCA0120
EQUIVALENCE(LOT(IlLET(I)II)(POM(l),FIRM12)) NRCA0130

EOUIVALENCE INNXA*NEN*LIN) MRCA01aO
C NRCA015SC

INTEGEO TAPE MRCAO160

C MRCA0170

LOGICAL EOF MRCAOIOc
C MRCA0190

DATA LIMO6(7OOO19IRPIWSH(12* )#SEVfNt6N7f71004)I*)CPAREN(INI) NRCAOZOO
DATA MANOS(@N(MAND IsbIVORS(BMIlVORI b.IseVORSf(SM(VOR)I MRCA0210

C MRCA0220

CALL SETEOF MRC A0230
REWIND 5 "RCAO2A 0

R~EWIND 9 NRC AOZSO

OEWIND 13 ORC AOZ60
pFilaME luPitRM ORCA0270

5631 CALL SETCLK MRCA@Z*O

CALL SET IT fbCAOR9O
SfLEC? sHAkOS MRCA0300
0400 MOCA031 0
POIN4T R064 MRCJAO3&O

2n64 FOQMAT(*0N20A-NRCA *so OUTPUT PROM PROGRAM VERSION &,, I/MI GOCA0330
READ 95"#PGLB MOCA0340

59" OPRMATIIOAS) IMCA03SO
POINT 5940PGLs NRCA£03600
READ 5?qIRIS.NRMIVP.NMOO.MPLtNPEoNDPO.TAPg.IVORGO,~'O.ISIO.TOLIINRCA0370
I tTOLI&SPOOM MOCA0383

579 POMAT(2I8.3I3.5IloSIaII.X.8E93.SASI ORCA0390
POINT 97S NRC A0400

9"8 FORMAT(IISMOIR Is No mv Po NO"VPL NP( NOPO TAPE IVORGO tED IBID MRCA0410
I YOU I TOLI a P0MM - INPUT DATA DESCRIPTION -CAMD TYPE 21 MRCAO6&0
PRINT 976* IQ* ISo.NR.WPVP.NORVPL.*ENOCNPO#TAPtEIVOQGO.#WOoBelOoTOLIMOCA0430
119TOL129FORM OC04

970 FORWAT(IO.40i2.IXol2.3(tl~e3I.813XI3Ist(4XlloX.III.SXeII.4X.Ie3MIoIRCAO43O
IX9&llX999o3le&X.SABI NRCA@400

NmIR.IS NRCA0470
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NPEOzI MRCA0480
NNNUN+ I MAC A0*Q0
I TOTALzNNN MACA0500
lF((N-1)*(N-50111107sIIO7sIO7 MRCA051.0

1107 NSAVRN MRCAO520

I F CNFO)29"99.29" a3000 MRCA0530
2999 F1QM(2)WSEVEN PORCA0540

KNUM a? MCAC 0550
KMUM*6 MACA0560

GO TO 3001 MRCA0570
3000 F1Rm(7)aCPAREN MCAC 0580

KNUMzNFO MACA0590
Kf4UMuNFD- I IORCA0600

3001 ICASEwO MRCAO610
NuPsN. I MPCA0620
I NDXa I R. MCAC 0630
IsIosa! MRCA0640
IFBIO IBID.! 04RCA0650
IVOQGO:! VOPGO4 MACA£0660
IF(TAPE)8o10*8 MRAC0670

10 IAPE*2 NRCA0680
GO TO It MRCA0690

8 IAPEu5 14RCA0700

11 !5K1~zI MRCA071 0
TAPEw2 MACC£0720

RSSNOW-500 MRAC 0730
NNNSAV:O MRAC 074 0

IFf IS)13*13. 12 MRCA0750

13 .LItUIA*1 MRCA0 760

LIMujLm SORCAC0770

N#lwL IM*I ORCA0780

GO TO 16 %lRCAO 790
12 REAO 92.1 (l'4(ICL eLuI*I0o) Ks! *ISb MRCAC800
92 FOAWAT140121 MOCAOSIO

PRINT 29.11 INlK*Lh*LwI IOIKU * gS) MlRACOSZ0

Z9 F0PMAT13rw.CP0OOUCT TERM DESCRIPTIONS -CARD TYPE 3#1H &*hlX*t013#IHAWCAO830
lI1013sI N## s10 13 * No * 013 s 11#' MACA084O
A. 3Mm IA. NACAOSSO

LIMmA1IM*15 MACAOS6O

NkmLIM+I MPAC£870

00 PO scteIs WIQCA0880

00 20 Lal*O M'ACA0890
20 lNIK*LlaINtKoLl~l PACA0900
14 GO T0121#&2s23*&Z)o!VOQGO 140CAO91O

C READ IVOR GROUPING VALUES MCAC0920

22 READ l0O,0,MI,11INI4t,,Ist.MI) NACA0930

100 FOAWAT#122.6131 MOCA0940
PRINT a.ON.JIIIMIMOCA0950

I FOAMAT(41*4010 01 -JeIh2..M CROW TYPE *4,IX*I&*&XsIl*8XMlRC£0960

1*25131 MOCA0970
60 T0122I*&ti.221.23IIVOQGO NRCA0980

C READ SIVOR GROUtNg VALUES MARCA0990
P3 READ 100*MS*(LOTIII.IoI.MS) MACAIoOOO

00 99 IDIOMS MACA 1010
momSen- 3.1 MACA 1020

9 Q(II)ELOTfM*MM NRCA1030

PRINT 10I*MS.(LOTlI.1m3.~s0§ MOCA1040
101 FOOMAY4MHOMS LOYII)1 flm,2...e.si -CAIM TYPE $*#1K.I2.2X.2l%3IMACAI0S0
23 IP(N0P326986#4O MRCA1*60
40 READ *I*(IgCEEPA(I3I*mt.NORIMOA17
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41 FORWAT(2014) MRCAI080

PRINT 411,(IKEEPR(I)oImINDR) MPCA1090

411 FORMAT(53HONUMBERS OF SELECTED INPUT DESIGN POINTS -CARD TYPE 6/(2MRCA!IO0

1015)) MRCA 110

26 IF(MVP)259259466 MRCA 120

466 REWIND II MRCA 130

DO 79 K=loMVP MRCA1140
C READ IN POINTS FOR VARIANCE OF PREDICTIONCOMPUTE PRODUCT TERMS. MRCA1150

CALL RDIT MRCA1160

79 WRITE(It)(X(I),Iz2s LIM) MRCA1170

R5 INT 594tPGLB MRCA1I18
594 FORMAT(IHIe|OAS) MRCA1190

HNSAVmNN MRC i200

NL aNN MRAA1210

DO 2 IlxINN MRCA1220

DO 2 JwI.NN MACA1230

C INITIALIZE SUMS TO ZERO MACA1240

2 S(I.J)sOeO MRCAI250

C READ INPUT DATA MRCAI260

REWIND 10 MRCA1270

TAPE.!APE MRCAI280

Mao MRCA1290

5 CALL RDIT MRCA1300

IF(MI)31,55o31 MRCAI310

55 WRITE(I0)(X(I)Iw2uNN) MRCA1320

IF(N0PO)5008o5OO6o5008 MRCA1330

5006 PRINT 55O6,M, (X(I),Ix29NN) MRCA1340

5506 FORMAT(IH 14,2X,9FI3,6/(7.Xs913,6)) MRCA1350

GO TO 7 MRCA1360

5008 IF(NDPO-1) 75007#7 MRC01370

5007 PRINT 6Mo,(X(I)oIi2*NN) MRCA1380

6 FORMAT(IH *14,2Xs7E17s8/(7Xs7EI7v8)) MRCAI390

7 DO 3 Iz2sNN MRCA1400

C GENERATE TRIANGULAR SUMMATION MATRIX MRCA1410

SiII)=S(,I )+X(I) MRCA1420

DO 3 Ja*INN MRCA1430

3 S(IJ)aS(IoJ)+X(I)*X(J) MRCAI44O

GO TO 5 MRCA1450

31 PRINT 594,PGL. MRCA1460

IF(M-2).(LIMOB-M))2097,2095,2095 MRCA1470

2097 PRINT 2096 MACA1480

2096 FORMAT(34HITO0 FEW OR TOO MANY DATA POINTS RMCAI490

GO TO 5400 MRCA1SO0

2095 PRINT IS MACA1510

15 FOSMAT(17HOSUMMATION MATRIX) MRCA1S20

S(1i,)UM MRCA1530

RECME I.O9s (1#1 MRCAI540

C FORM SYMMETRICAL NORMAL MATRIX A MRCA1550

O0 9 IlONNIN MRCAI560

LOT(1)mO MRCAI57O

00 9 JwI,NNN MRCAISSO

A(I*J)uS( IJ) MRCAI590
AUJl)S( I.J) MACA1600

C FORM MATRIX WHICH SAVES A OICAI610

AKIP(IJIUS(IJ) MRCA1620
AKP(J, I )S(IJ) MRCA1630

9 CONTINUE IRCAI640

00 33 ImIoNNN MACAI65O
33 PRINT 16,(A(I*J),JmINdNN)SIIsNN) MRCAI"O

PAINT 16,(S(JoNN)oJ*ItNN) MRCAI67O
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16 PORMATC1HOs7E17o8o0(1Xs7EI7.8)) MRCA1 680
DO 679 I=1.NNN MRCA1 690
83(1 ~S(IlNN) MPCO 1700

C sAVE CONSTANTS MPCA1 710
679 611()MPCA 1720

C INVERT A AND SOLVE NORMAL EQUATIONS MRCA1 730

96 NR=NR-I MPCA1 740
IF(NNNSAVS5OOo501 500 M4RCA1750

901 IF(VPO3*IOPO4ý0*090 MRCA1 760

,302 IF(I9ID.E0#2)I5IDSz3 MRCA1770
500 KOLJNT=O MRCA 1780

CALL ABT MRCA 1790
IF( IBIDSeEO.3)IBIDSa1 MRCA1800

2050 IF(ERROP) 22195660.833 MRCAI81 0
833 IF(NNNSAV)200992008,83 MRCA1820

2038 ISKIP=2 MRCA 1830
GO TO 660 MRCA1840

C ISKIPx2 MEANS NO FINAL COMPREHENSIVE MRCA 1850
5660 IF(NNNSAV)66Oo660#39 MRCA1860
660 DO 60 I=2,NN MR CA 1870

C COMPUTE THE AVERAGES OF EACH VARIABLE MRCA1880
050 AVVCI)=S(1Io)/S(1.I) MRCA1890

IF(NOBSoEO#4) ISKIP=2 MRCA 1900
NPED=NPE MRCA 1910

PRINT 61*(I*AVV(I+1)oI.1,NNN) MRCA1920
61 FORMAT(57HCAVERAGES OF INDEPENDENT VARIABLES AND DEPENDENT VARIABLMRCA1930

IE/(6( 13,El7.S))) MRCA1940
IF (ERROR )39*39983 MRCA1 950

39 IF(NDP+MVP)83983962 MRCA 1960
62 PRINT 594oPGLB MRCA 1970

IF(NNNSAV)61 1,611 .2023 MRCA1 980
2023 PRINT 57609SELECT9(LOTII)sIuIsNNNSAV) MRCA1 990
576: FORMAT(32HOINDEPENDENT VARIABLE SELECTION 9AS.IX951 11) MRCA2000
611 IF(NDR)63*63o44 MRCA20 10
44 PRINT 64 MRCA2020
64 FORMAT(32HOSELECTED INPUT DESIGN POINTS***) M4RCA2030

C P015K READS DATA FROM DISK(OR BINARY TAPE)FOR USE AS SELECTED DATA MRCA2040
C INPUT OBSERVATIONS AND CALLS PREVAR TO COMPUTE PREDICTED VALUES AND MRCA2050
C PPEDICTION STANDARD DEVIATIONS. MRC A2060

CALL RDISK(KOUNTINDX) 14RCA2070
63 IF(MVP)7202.7202,46 MRCAZOBC
46 REWIND 11 MRCA2O09
45 PRINT 43 MRCAZI 00
43 FORMAT (27HOSYNTNETIC DESIGN POINTS...) MRCA21150

DO 80 KmI#MVP MOCA2120
C READ IN POINTS FOR STANDARD DEVIATION OF PREOICTION#C.3MPUTE AND WRITEsmACA213O

READ(II)(X(Ils132oLIM) MRCA2140
BC) CALL PREVAR(KOUNTINDX) MRCA2150

72^02 IPICOUNT)63*8397201 MRCA2160
72CI IF(MVPL)3022,2022,3022 MRCA2170
2'1M2 PRINT S2,4I(.YY(KlYSDEV(K3.Ku1I9K0UNT) MRCAZISO

82 FORMAT (90M0 ITEM NUMSERPREDICTED VALVE.AN0 PREDICTION STANDARD DEVMRCA2 190
IIATION FOR INDIVIDUAL OBSEPVATIONS,0(3(I592EI7s811) MRCA2200
GO TO 83 MOCA221 0

3122 PRINT S6,(KoYYfK)oYSDEV(IC)sKwIK0VNI) MRCAZ222
96 FORMAT(66HOITEM NUUSERePREDICTED VALUEsANO PPL:)ICTION STANDARD OEVMRCA2&30

a RATION FOP THE PREDICTION L1NFe( 3(I992E17.S)) NRCA2240
83 IF(NR)107,103,a8 00CAZR50

C RESET MATRIX DIMENSIONS MOCA2260
84 CALL TIMFIXYIT) MOCA2270
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4009 FORMAT(4H4AUNoI5s5H TOOK,F13*8.99 SECONDS.) MACA2280
PRINT 4009oIQUN#XYIT MRCA2290
CALL SFTIT MPCA2300
N2NSAV MACA231 0
NN= NNS AV MRCA2320
NNN a N N MCAC 2330

C FORM NEW MATRIX A WITH SMALLER DIMENSIONS MACAZ3*O
DO 701 1=1,51 MRCA2350

701 LOT(I)=I MRCA2360
READ 859(LOTIL)aLwI9NNN) MARCA2370

85 FORMAT(511l) MRCA2380
NNNSAV=NNN MAC A2390
E PROR=0 *0 MRCA2400
CALL PEOUCM MRCA2410
NNsN+2 MRAC 2420
GO TO 96 MAC A2430

107 PRINT 507 ORCA2440
507 FOPMAT(29HOCARO TYPE 2 IS INCORRECT* MACA2450

GO TO 5400 MCAC 2460
103 CALL TIME(XYITI MRCA24 70

PRINT 4009. IRUN*XYIT MCAC 2480
GO TO(126s1279127*127)*IVORGO MRCA2490

127 NNNSAV=NEN MARCA2500
GO TO(126s128#129s12e),IVOAGO MRCA251 0

128 CALL SETIT MOCA2520
PRINT 2066 14RCA2530

2066 FOPMAT(1H2/65H 8 E G I N I V 0 A A E G A E S S 1 0 ~4 C A L C U MRCA2540
IL A T 1 0 N S) NRCA2550

SELECTs IVOPS MRAC 2560
WAITE(9*206)1 1MCA2570

2068 FORMAT(IH29119X/'71HOB E 6 I N I V 0 QA£ N A L Y S I S 0 F V A NRCA2580
IR I A N C E T A S L E S*49X) MACC£2590
CALL IVOP NRCA2600
CALL TIME(XIT) ORCA261 0
PRINT 2093tX1T 14RCA2620

2n~93 FORMAT(21NLIVOA EXECUTION TIME *P)I.5*9N SECONDS*) NRCA2630
GO TO(I26oh26s320.1291%IVORGO "OCA26aO

129 CALL SETIT MARCA26ýO
PAINT 2067 NDCAR66o

2U67 FORMAT(1N2.'674 8 t G I N 8 1 V 0 R R E 6 A 1 S S I 0 N C A L C NACA267O
IU L A T 1 0 N S) &CAR60
SZLECTsBIVOAS wCA&C9O
WRITE(9920691 10CA1700

2069 FOAMAT(INZII9X/#73HO8 E 6 1 N 8 1 V 0 Q A N A L Y S I S 0 F V MOCA27IO
IA A I A N C E T A B L 6 5*47X M0AC£720
CALL BIVOR OCA2?30
CALL TIME(XITI NRCA21740
PAINT 209S.XIT OWCAZS*

2098 FORMAT(22MLSIVOA EXECUTION TIME #F13.SogH SECONDS*$ 10CA270C
126 CALL INTYL(XITI OWCART7@

ENO FILE 9 10AC £790
REWIND 9 NCA2790
END FILE 13 ORCA200
AIEVINO 13 CfakI 0

2062 AEADf9o20&1I)Lt? $MCA&*U
2061 FOMNAT(I3SAI "CARIOI'IF(eOFqXYIT)IGO TO 206 mCAR40
2063 PRINT 2001 eLE? lcaIsI

Go TO 2002 WCAR00
2065 REWIND 9 locA2II
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2094 QEAD(13s2062 )LET MACA2SS80
IP(EOFIKYIT)IGO TO 2092 MRCA2890

2091 PRINT 2061 eLET MRCA2900
GO TO 2094 MRCA2910

2092 REWIND 13 MRCA2920

CALL INTVL(XITI MACA2930
PRINT 40O8.XIT MRCA2940

4008 FOAMAT(24HLCOMPPENENSIVE PRINTOUTSP13o9s9H SECONDS&) NRCA2950

2010 CALL KL0K(XIT) MACA2960
PRINT 2013#XIT MRCA2970

2013 FORMAT(44H4TOTAL PROBLEM RUNN4ING TIME(MQS*/MIN*/SECOI,*ASI MRCA2980

GO TO 5401 MOCA2990

221 STOP ORCA3000
5400 RETURN PORCA3010

END MACA 3020
T SUSTYPE*F0RTRAN*LMAP*PSIN ASTOCOOO

SUBROUTINE AST AST 0010

COMMON A(5I.S1).BSDEV(51).B(260I11YY(700f).;X452).XD(51) AST 0020
COMMON AVV(52).YSDEV(7O00)gAW(51),RECM.NOR,%MVPL.~#4SAVNtENeLOTI51 lAST 0030

COMMON NNL.DETERM.NOSSTOLQS.TOLCESERPOQ.NPEO. ITOAL.N.NOPO. ICASEAST 0040
COMMON QSSMOISK1P.NJ(25?,M4,FIRM(7),KNUMKMUM.M8,MlN9(25),IO AST 0050
COMlooN NNXA.NNSAV.SOEVAKP(51 .51),B8(52).Sf5l.52).PGLS(I ) AST 00600
COP4MCN IN(49. i)ol ReISeMI .JLJM.NN.M.NTAPE AST 0070

CCMMCN SELECT*13IDIBI0S AT08
D)IMENSION ESTEP(30),ISQEO(31).FGPAPMIOS1I.IOS(30).CMPPR630) AST 0090

D)IMENSICN CHI(30) AS? 0100

DIMENSION EYYI7000) AS? 0110

DIMENS10ON LIT Ib2l AST 0120

COUIVALENCEI IOGOe"OBSI AST 0130
EOUIVALENCE(LIT(l)*S(1396)) AST 0140

EOUIVALENCEIES1'EP(1).8(201)3.(IIPEO(I).8(233)I A8? 0150
COUIVALENCE(FGQAPNI13.B6262l).(I0S~I1).943273) Af? 0160
EQU IVALENCE(CMPFR( I .3(35711%(CH I (I IS 18111 AST 0170

E2U:VALFNCF(EYv*YSDEVl AS? 0800

DATA SLANa(46" AST8 0190
OAýA XXX44WX4 I AST 0200
DATA ZZZ(SH* I AS? 0,210

731 CALL 1'dVLIXIT) AST 0120

CALL GAUSS AST 0230
CALL INTVLIXITI AST 01'0
POINT Qe67.CASE.MI? AST 0150

9S7 9OQMAII9fMOMASIX 014VERSION *14o&IM o*,EVALUATION TIME u*13*8*.9mA*T 0260

I SECONOS.) AS? 0170
745 IF(fO*OQi106.995.306 AST 0100

998 IF (0MER"OM1060 106699 AS? 0190
999 POINT 35.0ETEON AST 0300
.35 P00:WA?130400CTERM INAN?...I18 A"? 0310

POINT A INtVERSE ANDC SOLUTION TO SIMIULANE0O.S EQUATIONS AS? 0310
POINT 17 AS? 0330

17 FOOmA?(S9mOINVCQSE Or MATRIX A AND0 SOLUTION TO SINULTANE0US COVATIAS? @340
IONS) AST 0350

00 5T' 2 1 $004H AD? 0340
57 POINT 16*tAfI#Jb9Jw3sN)ls(lIl AS? 0370
16 FOOPAT(?E17*01 AS? 0350

559.00o AST 0390
00 20 1 at OH Asr @400

'SSSSfSlRl.III46)SSOI AS? 0400
SS~S~t0..~ItS AS? 0410

ASS0.A ?SS-ZSS AS? "40
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CORSOuASSR/ATSS AST 0450

IP(CORSQ 109.23*23 A8T 0460
23 COReSORT1CORSO) AST 0470

FNu NNN AST 0480
IF(S1I*l)9EOFNIGO TO 31 ABT 0490
SOEvSQXSSE,#(S(ol,)-FNI AST 0500
1F(SDEVSQ) 108*24,24 A87 051C

31 SDEVSOxO*0 AST 0520
24 SDEVeSQRT(SDEVSO) AST 0530

D0 21 1316P4N AST 0540
IP(A( 1.1))996.997.997 AST 0550

997 BSDEV(I)mSOEV*SORT(AfIsI)) A5T 0560
21 CONTINUE AST 0570

GO TO(150eI5IeI5Oh*IBIDS AST 0580
150 CALL IDENTM AST 0590

CALL PRINTM AST 0600
IF(IDGO*GT#1)GO TO 151 A8T 0610
GO T0(I51.15I.:52.*IBIDS £87 0620

152 PRINT 153 AST 0630
13!3 FORM£T(65140N0 IDENTITY MATRIX CHECKS WILL BE MADE ON SUBSEQUENT SlAST 0640

IVOR RUNS*) AST 0650
151 PRINT 58*(1,BSDEV(I)*IeI*NN1) AST 0660
58 FORMAT((35I4OSTAND)ARO DEVIATION OF COEPFT C:ý-,'S lof(64 1 ,*k 7*8f))AI T8 0660

C THE G FORMAT IS USED TO POINT THE '4AXIJMU rNlM1b. OF ..A'104F1CANT DIGITSAST 0~680
C IN THE GIVEiN NMBMER OF COLUMNS. AST 0690
1074 PRINT ;7,4oSSE AST 0700
574 FORMAT (1140. GIS*33H RESIDUAL- 00 CM40O SUN4 OF SQUARES*$ AST 0710

1075 PRINT 575oATSS AST 0'20O
575 FORMAT (I14 * G18.4514 TOTAL SUMN OF SQUARES AOJUSTED FOR TI-4 MKANeAST 0730

1) A8T 0740
1076 PRINT 576*ASSR AST 0750
576 rORNAT (IN * 616,8014 REGRESSI,1N SUN OF SOUARES A0JUSTED FOP THE AST 0760

I MEAN.) £8? 0710
1077 PRINT 571%COR AS? 0780

577 FORMAT 41H1 * 636.3014 CORPELAIION COEFFICIENT abe)o AS7 Q-vQ
lC78 PRINT 57$*S50EV A*T 0800
576 FORMAT (IN e 918.3514 SWuARE ROO OF RESIDUAL VARIANC191 AS? Oslo

CALL C PORIASSR*SSE *Noft#COP s.PGt-S eLCT *NSAV* 4) Af? w82Z0
IF It#4SAV 1&083*22064i03 AS? 0630

2054 OSSMO.ASSQ AMT 0640
ESS36 SSE AS? 0650
Not acmPNN AO? 0840

MOu N AST 0670
SPIIEI I3*I0931POA AS? 0660

2093 POPMartINS eICA6,9X I ASl? 0.90
VOITE 413*2049111 AS? 0900

R0OS WOSTIO.9(It OP woo PI or flo W ANIAOCE $ ,I4.ISE AO? 0910
VRITC 413*800S1 A? 09190

.20SS FORPAT haHO.71ICOEPPICISIt Of "D lOPS OF P FOR EASIT 0930
IOCSf5IO01 ON 1"wOSPEWSVT#*X,. 00Ali 10 1."tI T ION OCLET10 VASY 0900
PARIASLES OCLETE VARI1ADLES V44ASASL MILCTIO~tN,351190x AST 0980
WQIT91( 308O9OICOOSO AST @960

2*090 POONAgI tH0.FO.7,I 111 N RIP.9M 10411 @910 T v
COO To so AST 0900

R183 CALL PIX AS? 090
101OSS001 14$toS..l0S AST 1000

to' .6 '*t.PAO.'.f AO? 1010
POUT*(5-SR*F@TP3Il5~6LAI S "S? 310a

IF~ev ASTl 1Ee Pue~).9 9 021
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2389 POPMAT(IM 9F9*7#13XI2sl2X9FI4@3qXs52A1) AST 1040
G0 TO 59 A51 1050

54 1FP~SSMO,100)55059059 AST 1060
55 WQlTE(1392093)PGLG AST 1070

WQITE 130561 AST 1080
56 cOQMATUIHO.sOHr60 FINAL COMREHENSIVE PRINTOUT SINCE MATRIX FOR NAIAD? 1090

iN PUN COULD OT B9?E INVERTED *39X) AST 1100
PSSIN08-1 .0 AS? 1110

15, jF(NPEO)99#5660s99 LOT 1120
,ýOmPuTE PREDICTION EPRPO AST 1130
qq OEWIND 10 AST !140

E~S2 a 0.0 AST 1150
25 00 26 KsI#M AST 1160
28 PEAD 4133fX(1)*Im2.*NSAVj AST 1170

IF (*N4S AV) 29029972410 AST 1180
728' Pdwi&2 AST 1190

DO 7299 1.2. ITOTAL AST 12CO
It(LO'i(1))1044727.7299 AUT 1210

727 XfNNV):X(I) AS? 1220
128 NNWuNNNV.1 AST 1230

-!299 CONTINUF AS? 1240
20 vy(KiSO(t) AST 1250

DO 3C 1a2sWNN AST 1260
.ýQ YY(K)mYY(I( .X( I)*B( I) AST 1.270

EYY(KC)mX(t*4SAV)-YYCKl AST 1280

ES26 ES2 + EYYCKI*EYY(K) AST t290
26 :ONINUE AST 130C

qfIEWND 10 AST 1310
C 3~u~QANGA OF EQQOpS AST 3320

CA4..3 MAXM4IN(N.EYY.EY¶V.EYYLSIXM4AXSIXMIN$ AST 1330
r0~vVQMINe AND PLOT 0ISTMIStJTION OF EMWORS* PERWORM CHI SQUARE TEST AIT 1340

C ~ ~'ss:LEA19T 1350
FR WANGE a * UEY AS? 3360

CELTA ERAGtr..30.0 LOT 1370
cr5 trPt1 (I EYYL + EOEITA AST 1380o

I Fat ( I * 3.0 AST 1390
DO ?Ot73 11*2.30 AS? 1400
1wavofJ 1)a 0 AOT 1630
EiZ STEVIlin a fSTEP411-n.E10I.TA AS? 1420
[$EsypfIzý) eyvv AS? 1430
livarofJI . 0 LOT 3440
00 2004 fIumlsM LST 1450
jjo ftyvt It I4'vvLI4(? LOT 1460

? raoi3* lEOJ. 3srEowiJJ.1 1+1 AST 1470
I00PQf430l*IPrEWQf30l*,3PS6Oe1 IANT !000

CaLL. ASSJNTPISO531.OVONgM5WIS.NP~LT 1490
2n92? IWAOPO-11 ,50t5OI70S0*0 AOT 1900

a,?5e "INT A944.GLOlL 1510
%~94 F#0W*TtimistoaOILO 1920

l'45AV)034203.I04 LT 3530

?:14 0014T' t60*StL.ECT% ILOI L3IM L41 *I.5AV1 AST 1560
.~,#"7 l rF~NAO*M~oImwRtp~cN vallooSL SELECTION *AO.IKOSIi, LOT 1550
22:~1 0Rr1 *6C.YtI.YIKOYM AST 1600
11526 r0.wAylf49t.3:T1 NvaSER PmOICTEO VALUJE L# powsICTION EP010 to, AST l570

143~~~a Is"t.0S ~t10
PRIN4T 51s.foeS LOT 159.

"lovNT t9460LS LOT 1600
IP~tiSA~IOI.2O10203 LO 1630

Z011 POINT gk76O.SELECT~tLOT1LI@I.LI0.INPO4AVI AST 1620
2116 ORIN' 2009,E*APG( AST 1630
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2035 F'ORMAT( 40HOPPEOJCTION ERROR FREQUENCY DISTRISUTION -e AST 1840

19H RANGE a F1504# / AST 1650
228H UPPER BOUND FREQUENCY 2X, AST 1660
3 9H8AP CHARTo6lXt3HCHI#3Xo6H08S FR93Xe7VIEXPtO FRI AST 1670

2038 DO 2032 It v 1.30 AST 1660
IFGPPH=3FPEOclII AST 169C
!FGPPH xMINC(699IFGRPH) AST 1700
IFc(fFGR0H)2044.2026o2024 AST 1710

?'ý24 DO 2021! 17G= 1.IFGRpH AST 1720
2125 FGRAPH1(i ~j=XxX AST 1730
2026 lFG^RP,4= IFGQPH +1 AST 3740

IFc!FGPPH-66 )2033a203492034 AST 1750
2034 FGRAPM (851*ZZZ AST 1760

GO TO 2035 AST 1770
2033.0DO 202?1 3FG UIFGRPH*65 AST 1780
2027 FGRAPH ( FG)=BLAN, A8T 1790
2035 JF(NDPO-1 )2028#203092028 AST 1800
2028 IF(CNII 1)s2040.2043 .2041 AST 1810
2040 POINT Z029sESTEPf(I)oIFRE0(Jt1,FGRAPi4 AST 1820

GO TO 2032 AST 1830

?n~1 PRINT ?029,ESTEPtLIT).FREQ(It).FGRAPi4,C141111)eOBFUI?.*CMPFR(1I AST 1840
202ý) FORMA7 (2X-F:5.4.2X. 156X. IHI 65A1 * X.FO.3. lX, 5,2X.F9.3I AST 1850

GOTO Z013? AST 1860
2030 IF (CHIt11) ,2042#2043#Z043 AST 1070
2042 PRINT 2031,EL.TEP(3I1I~FREQ(I1).FGRAPM LOT 1880

GO TO 2032 AUT 1890
2043 PRINT 2031.ESTEPII1).JFREOII1).FGRAPM.CHI(I13.IOBF(Z1),CNOPFR(I1) A87 1900
'031 F0PMAT(2X.El~.8.eX.I5.6X.1HI.65A1,lXcFg.3.3X.J5.2X.F9,3I A8T 1910
2032 CONTINU~r £87 1920

IF iOF)2048s2048o2049 AST 1930
2048 PR'NT 2050 AST 1940
20,50 FPOMATfIX,3I?4CHISQUARE COULD NOT BE COMPUTED) AST 1950

GO TO "680 AST 1960
2049 PRINT 2039,CHISUMoJDF AST 1970
2039 FOR*MAT(12H CHISQUARE a FIS*3#22M DEGREES OF FREEDOM 1 5 1 £87 1980

GO TO 5660 AST 1990
5027 PRINT 594oPGLB £13T 20-00

IF' (P#NSAV$Z019#2016,2019 AST 2010
2019 PRINT 5760tSELECT,(LOT(LIQ)oLlQnltNM4SAVI AST 2020
2018 PRINT 75. (K#YV(K),EYY(I()9Km1,M) AST 2030

75 FORMAT(U.9NOITEM NUMBER PREDICTED VALUE AND PREDICTION ERROR I/ AST 2040
1 (3f I5oZEI5s6))) AST 2050
PRINT 5528#ES2 ABT 2060

5518B F0QMAT(27M0CHECK. ERROR SUM OF SQUARES /'1M 9GIS) AST 20t0
PRINT 594,PGLB AST 2080
IF(NNNSAV)2021 .2020,2021 £ST 2090

2021 PRINT 5760,SELECT,(LOT(LJO),LI~u1.PNNSAVI £0T 2100
2020 PRINT 2006#EPANGE AUT 2110
2006 FOPMAT( 40HOPIREDICTION ERROR FREQUENCY DISTRIOUTION / ACT 2120

1I Hl RANGE a Elgo6, / AST 2130
228H UPPER BOUND FREQUENCY ZX, AST 2140
3 9HSAR CHART,6lXo3HC141,3Xo6H08S FRo3X.7NEXPD FR) A8T 2150
GO TO 2038 AST 2160

104 PRINT 504 LIT *170
504 FORMAT(36M0A RERUN CARD IS MADE UP 11NCOMPECTLYI AfT 2100

ERROR.-: .0 AST 2190
GO TO 5661 AST 2200

106 PRINT 505 "IT 8210
5013 FORMAT (251IOMATRIX FAILED TO INVERT*) LIT 2220

GO TO 83 LOT 2230
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108 PRINT 506 AST 2240

506 FORMAT(22HOVARIANCE IS NEGATIVE*) AST 2250
GO TO 83 ABT 2260

109 PRINT 503 AST 2270

503 FOPMAT(55HOTHE SQUARE OF THE COPRELATION COEFFICIENT IS NEGATIVEo)ABT 2280
GO TO 03 AST 2290

996 PRINT 995 AST 2300
995 FORMATC67HOAN ELEMENT OF THE MAIN DIAGONAL OF THE INVERSE M4ATRIX lAST 2310

is NEGATIVE*) AST 2320

83 ERROP=1*0 AST 2330

GO TO 5661 AST 2340
5660 ERRRO=0*0AT25
5681 RETURN AST 2360

END ADT 2370
T SIJBTYPE*FORTRAN*LMAP*PBIN BIVOROOO

SUBROUTINE BIVOR BIVOROIO
C BIVOP-BACKWAPO IVOR-INDEPENDENT VARIABLE SELECTION SUBROUTINE FOR THE SIVOR020

C OQDERING OF INDEPENDENT VARIABLES ACCORDING TO MAGNITUDES OF BIVORO:30
C REGRESSION SUMS OF SQUARES. BIVOPO&C

COMMON Ac51,51).SSOEV(51).B(2e01),YY(7000),X(52).XO(51) SIVOROSO

COMMO#4 AVV(52),YSDEV(7000),AW(51).RECMNDR.MVPLNNNSAVgP.4Ne4-OT(51)BIVOR06O
COMMON NNLOETERMNIBSoTOLPSTOLCES.ERRORNPED, ITOTAL.N.NDOPOICASEBIVORO70
COMMON PSSMO, ISKIP.NJ(25).M4,FIRM(7),KNUMKMUMMB.MI.NQ0(25).IQ BIVOROSO
COMMON NNXANNSAVSDEV.AKP(51,31),BB(52).S(52,521.PGLS(10l 19IVOR090

COMMON IN(49,1O),IR.ISMIJLIlM.NN4M.NTAPE BIVORi 00
COMMON SELECT.IBIDiISIDS BIVORI 10

DIMENSION LAT(511 BIVOR120
EQUIVALENCE (LAT9XDl BIVOR130

EOUIVALENCE (NIBS. lOGO) BIVOR140
C m44 COUPLED WITH THE VARIABLE LL(IN CMPR) CONTROLS THE PRINTING OF B1VOR150

C ANALYSIS OF VARIANCE TABLES. 81 VOR160
NOB SZ =1IVORI7O

C SAVE NPED B IVopISO

NTAPE=NPED *IVOR19O
KNUM=-I 15 1VoRi00

C KNUM-1 LETS CASSR KNOW THAT SIVORC INSTEAO OF IVORMI BEING USED* SIVOR210
NPED0l I IVOR220

ASSIGN 551 TO ISEE BI V0R230
M4=0 BIVOR240

GO TO(l.22)sISKIP 81 VOR250
I WRqITE(139103) BIVORZ60

103 FORMAT(56H0*** S I V 0 Q F I N A L C 0 M P R E H E N S I V E ***S1V0R270
1 .64X/120X) BIVOR280

22 D0 101 1=1.51 SIVOR290

101 LOT(I)0O 81VOR300

I TOTAL~l BIVOR310

0O 102 I.1,NB SI VOR320

102 ITOTALwITOTAL+NO( 1) 51IVOR330
ISTARTaITOTAL4I BR V0R340
IFI ISTART-5I )I06sI07s107 81V0R350

106 DO 105 I=ISTART*51 SIVOP340S

105 LOT(lia1 8 V0R370
107 00 200 IslM8 SIVOR380

IDUMO0 SIV0R390
I TOTAL-I START-I SIVOR4OQ
ISTARTsISTART-Wil I) IVOR4ZO
NMONQ (I 11 DVOR420

JSAVEnI TOTAL St V0R*30

JLOTwI START-I eivop-440
00 600 K.IN" a BVO0450
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GO TO ISEE S1VOR460

551 EpRROmu1. bI V0P470

CALL REDUCM S1V0R480
CALL CASSRIIDUM*KGO) B1V0R490

GO TO(500,501)oKGO DIVORSOO

501 LOT(JSAVE)w1 SI VORSI 0

.JSAVE*JSAVE-1 SIVOfl520
GO TO 600 81V0RQ53Q

530 JLOTwJSTART-1 B1V0P540

ICASSR.wO S1V0R550

DO 300 JwISTARTsITOTAL D1VOP560

IPCLOT(J) )301 .301 300 81 VOP570

301 JLOTaJLOT+I 51VOASSO

KASSRm'(ASSR+ I SI VOR590

AV(KASSR).B(.LOT)*(e(JLOT)/A(JLOTJL0r)) 81 VO01600

LAT (KASSR)* SIVOR610
300 CONTINUE SIVOR620

204 IF(I(ASSR-I )221 @400,404 SI V0R630
400 !XMINBl 81 VOP640

GO TO 402 81 V0R650

4D4 CALL MAXMIN(KASSRAVAMAEAMINIXMAX.IXMI1N) B1V0R660
402 IMAXzLAT(IXMIN) SI VQR670

IFIIBIO.NE*Z#OR.3DGOONE*l)GO TO 100 BIVOR68O

JSIDS=3 B1V0R690

1810*1 B! VOR700
100 GO TO(524*5261,NOBS 81 VOik7i 0

524 IF(NNN-NNNSAV)525*526o525 SI V0R7E0

5P5 ERQORw09O SI VOR730

09 CALL REDUCM S1V0Q740

CALL AST S1VOR750

IF( ISIDS.EG*3)IBJDS02 S1VOR760

NPEDxNTAPE S1VOR770

IF(NNN-2)220#2209526 BI V0R780

526 LOTCIMAX)al B1V0R790

NOBSm2 BIVORBOO

NPED*NTAPE SIVORSI 0

ERROR .0.0 BIVORS20

CALL REOUCM 81VOR830

CALL AST SI VOR84O

IP( ISIOS*EO.3)ISIDSv2 1I1VORS50

202 IF(NNN-2)220,220s599 SIVORS60

599 ASSIGN 500 TO ISEE BIVOR870
60C CONTINUE eIVORSso
200 CONTINUE BIVORS9O

220 RTURNBIVOR900

221 STOP SIVOR910
END 81V0R920

SUBTYPE#FORTRANLMAP*PSI N CASSROGO
SUBROUTINE CASSQ(KASSRKGO) C-ASSR610

COMMON AI5I.5IIBSSEV(Sl),8(tO01),YYVI7OOQ),M458)MO(51l CASSR020

COMMON AVV(53),YSDEV(7O00leAWI5I1,RECMoNORoMVPLetNNSAVONNNeL0!(5l)CASSRO30
COMMON NN#L.DETERMMOBSTOLRS.TOLCESElOPOIWO, ITOTALNNOPO, ICASECASSRO40
COMMON RSSMO. ISIKIPNJ(Z5),M4.~PIMU7).KNUMKMUMMSMIMO(25).IO CASSRO5O

COMMON NNXA.NNSAV,5OgVAKP(5l,51lS6(52),gStZ,2I@PGL.S(I10 CASSR060
COMMON IN(49,I0O),R,?SMt.JLIMPN*4MNTAP! CASS0070
COMMON SELECT#IS30,I8IDS CASSROSO
DIMENSION EYY(7000) CASSR09@
EQUIVALENCE (EYY*YSOEV) CASSR1 00
EQUIVALENCE(UOGOoNOUS) CASSRi 10

EOUIALECECOLI~TCLES)CASSR120
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FNNNuNNN CASSR130

CALL GAUSS CASSRI40
745 IF(FRROR)IO6,993,106 CASSRISO
998 IFW:ETERM)1O6t106,57 CASSRI6O

57 SSR-0.* CASSRI7O

00 20 IunoNlN CASSRISO
2C SSR-SSR+8(I)*86(II CASSR19O

SSEmS(NNLNNL)-SSR CASSRZOO

ATSSzS(NNLtNIW)-((S(IM4L.•4*2)/5(1,1)) CASSR210
ASSRwATSS-SSE CASSR220

C ISKIP IS SET IN THE MAIN PROGRAMISKtPal IF MAIN RUN IS SUCCESSFULox2 CASSR230

C MAIN RUN IS UNSUCCESSFUL* CASSR240
GO TO(5795aO),ISKIP CASSR250

580 CORSQ=ASSR/ATSS CASSR260
If(C0PSQ) 109,2323 CASSR27O

23 SOEVS0:SSE/(S(1,)I-FNNN) CASSR28O

IF(SDEVSQII08,24,24 CASSR290
24 CO 21 Iu.NNIN CASSR300

IF(A(II) )996*21,21 CASSR310

21 CONTINUE CASSR320

999 CALL IDENTM CASSR330
GO TO(579,579,579,17),IDGO CASSR340

579 KASSPzKASSR+1 CASSR350
AW(KASSR)wASSR CASSR360

"C ASSR - REGRESSION SUM OF SQUARES ADJUSTED FOR THE MEAN CASSR37O
C KGOm i MEANS VALID ASSR WAS COMPUTED w2 INVALID ASSR CASSR380

KGO-I CASSR390

GO TO 221 CASSR4OO

17 IF(KNUM+I)l9,18,19 CASSR410

18 IF(NNNEO.NNNSAV)GO TO 19 CASSR42O

CALL REDUCM CASSR430

CALL ABT CASSR440

KGOu2 CASSR450

GO TO 221 CASSR460

19 PRINT 2009oTOLI2 CASSR47O
2009 FORAT(79HODEVIATION OF A MAIN DIAGONAL ELEMENT IN THE IDENTITY MACASSP4SO

ITRIX LARGER THAN 1(2)s ,G9,15H *RUN REJECTED.) CASSR490
GO TO 83 CASSR500

104 PRINT 110 CASSR5IO

110 FOQMAT(32H IVS CONTAINED NEGATIVE ELEMENT*) CASSR52O

GO TO 83 CASSR530
9S PRINT 995 CASSR540
995 FORMAT(67HOAN ELEMENT OF THE MAIN DIAGONAL OF THE INVERSE MATRIX ICASSR550

IS NEGATIVE*) CASSR560

GO TO 83 CASSR570

106 PRINT 505 CASSR5SO

505 FORMAT (25HOMATRIX FAILED TO INVERT*) CASSR590

GO TO 83 CASSR600

108 PRINT 506 CASSRGIO
506 FORMAT(22HOVARIANCE IS NEGATIVE*) CASSR6UO

GO TO 83 CASSR630
109 PRINT 503 CASSR64O
503 FORMAT(55HOTHE SQUARE OF THE CORRELATION COEFFICIENT IS NEGATIVE9)CASSR650
83 PRINT 2089,(LOT(I)ImlNNNSAV) CASSR660

2089 FORMAT(6H IVSx 15111) CASSR670
KGOm2 CASSR6O

221 RETURN CASSR690

END CASSR700
T SUBTYPEFORTRANoLMAPePBIN CHI SO*"0

SUBROUTINE CHISQ(NESTEPsIFREQO8 ,SDEV,sIDFCHIoCHISUMIO8FR, CIISQ010
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ICMPFR) CmISo020
C THIS SUBROUTINE FITS A NORMAL CURVE WITH MEAN 0 AND STANDARD DEVIATIONCHISO030
C SOEV TO THE DATA IN IFREQ WHERE THE UPPER BOUND OF EACH INTERVAL IS INCMISO040
C THE CORRESPONDING ENTRY IN ESTEP, N IS THE NUMBER OF INDEPENDENT CHISQ050
C VARIABLES. OB IS THE NUMBER OF OBSERVATIONS. CHIS0060
C THE ROUTINE GROUPS THE DATA SO THAT THERE ARE AT LEAST 5 COMPUTED CHISO070
C VALUES IN EACH INTERVAL AND THEN COMPUTES THE CHISQUARE STATISTIC TO CHISO80
C GIVE AN EST'MATION OF THE GOODNESS OF FIT. ON EXIT FROM THE ROUTINE CH1SO090
C IDF CONTAINS THE NUMBER OF DEGREES OF FREEDOM* CHISUM THE CHISQUARE CHIS0100
C VALUE# AND CHI(J) CONTAINS A -1 IF THE JTH INTERVAL WAS NOT THE LAST CHISQIIO
C OF A GROUP OTHERWISE IT CONTAINS (OBSERVED FREQUENCY-THEORETICAL CHISQI20
C FREOUENCY)**2/THEORETICAL FREQUENCY. IF THERE IS AN INSUFFICIENT CMISQI30
C NUMBER OF OBSERVATIONS THE FIT IS NOT ATTEMPTED AND ALL OUTPUT VALUES C41S0140
C APE SET TO -1 EXCEPT FOP IDF WHICH WILL BE -(N+31* CHISQ5so
C IOBF(J) CONTAINS ON EXIT THE OBSERVED FREQUENCY IF THE JTH INTERVAL CHIS0160
C WAS THE LAST OF.,A GROUP* OTHERWISE ITS CONTENTS ARE MEANINGLESS. CHISQ17O
C LIKEWISE CMPFR(J) CONTAINS THE THEORETICAL FREQUENCY* CH|S180

ODIMENSION ESTEP(30).IFREO(30),CHI(30) CHISQi90
ODIMENSION IOBFR(30).CMPFR(30) CHISQ200

FOTsQ.0 CHIS0210
KOUNTsO CHIS0220
CHISUM-O.O CHI50230
PROBOO,.0 CHI50240
FOO20 CHIS0250
IF(OB/5.0-FLOAT(N)-3eO)II,3 CHI 50260

t JJwI CHTSQ270
CHISUM=-IsO CH S0280
CHI(30)s-l,0 CI 50290
GO TO 14 CH S0300

3 DO 10 JaI,30 CI 50310
IF(JeNE,30)GO TO It CHI 50320
PROBNs],0 CHIS0330
GO TO 2 CI 50340

II PROBNFPREO(ESTEP(J)/SDEV) CHI 50350
2 FOCuOB*(PROBN--PROBO) CH S0360

FO=FLOAT(IFREO(J))+FO CH S0370
IF(FOC-5*0)4,4.5 CH S0380

4 CH! (J)z-I.O C0I S0390
GO TO 10 CH S0400

5 FOTaFOT+FO CMI 0410
REMAINxOB*(Ie0-PROBO) CHI 50420
IF(OB*(IO-PROBN)-5,O)I.6s7 CMI 50430

6 FOuFO÷(OB-FOT) CH S0440
FOMPEzFO-REMAIN CM S0450
CMI (30)uFONRE#FOMRE/REMAIN CM S0460
IOBFQ(30)uFO CHI 50470
CMPFR(30)RENMAIN CH S0480

CHISUVMCHISUM+CHI(30) CMI50490
KOUNT a KOUNT +1 CHIS0500
JJs J CHI50510

GO TO 12 CH S052C
7 IF(J-30)9#,S9 CMIS053C
8 FOC REMAIN CH S0Q4C
9 CHI(J)a(FO-FOC)**2/FOC CM S055C

CHISUM- CHISUM + CHINJ) CH S056C
IOBFR(J )IFO CMI 0574
CMPFR(J)*FOC CH IS058

KOUNTR KOUNT + 1 CI Is0594
r0 a 0,0 CHIS0601
PROSO a PROON CHIS0611
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10 CONTINilE CH! S0620
GO TO 17 CMI S0630

12 IF( JJ-29) 14.14.17 CHI S0640
14 DO 16 JrJJ929 CM! S0650
16 CHI(J) =-1.0 CM! S0660
17 IDF KOUNT -- N - 3 CM! S0670

RETURN CHIS50680

END CM! S0690

T SUBTVPEIFORTRANLMAPPBIN CMPROOOO
SUBROUTINE CMPR(RSSM.ESS,!RNCORRBPGLBLOT.NNNSAV.'44) CMpROOIO
DIMENSION B(51),J152)oPGLB(1O)9LOT(51I CMPR0020
COMMON DUM 25458)e*SELECT CMPPOO30
DIMENSION LIT(52) CMPROO40
DIMENSION FORM (9) ,5CDA(4).BCD8(4),BCDC (4),FORM2(8) CMPRO050
EOUIVALENCE(DUM(4048),LIT(1)),(DUMC41OQ).J(1)) CMPR0O60
0ATACPORM(I)o!Iv.9)(BH(5HOY a ,314E20#14t ,BM oeM(3H + t o8HCMPROO7O
lE20*I4,3o8HH Xt*12**BH1H))s 98H oSHE) ICMPR0080
DATA(E3CDA(I),1sl.4)(IHI,1M2,1H3,1M4) CMPPO090
DATA(C~CD(I),!zl.4I(lHOZH66,2H37,2H 8) CMPRO!OO
DATA (SCDC( Cl= 1 .4 (2H88.2H58.2H29, IHI) CMPRO1 10
DATAUFORM2UIa1.m 8)(SHc4X, o8M oSM(2H+ ,E2*eMO*14,3H 9CMPRO120
I8HXU!,2q1H*8H)qIX) * 48H 48Hx) ) CMPRO130
DATA BL.ANK(6H CMPROI 40
DATA L(9) CMPRO 150
IF(M4 )889S7o88 CMPRO160

F17 LL=I CMPRO 170
M4z I C14PRO180

as P2IR CMPROI 90
AN=N CMPR0200
RSQUOTzRSSM/R CMPRO2I 0
OMQaAN-R-1 * CMPR0220
NO*IR=OP4R cmpROZ2o
IF(OMP*EeO.0)GO TO 200 CMPRO231I
ESOUOT=sESS/OMR CMPR0240
FOQOT*RSGUOT/ESOUOT C MPR 0250
GO TO 201 CMPRO251

230 ESQUOT=O.0 CMPRO252
FQUOT .9999999999.9999 CMPRO253

201 IPCT=IR+I CMPROZ54
62 IF(NNNSAV)38,63o64 CMPRO270
63 LLz2 CMPROZ8O

K. IRCT+1 CMPR0290
00 56 Iw2oK CMPR0300

56 J(I)wI-I CMPR0O310
70 WRITE (L*1)PGLB~tSLANK CMPR0320
21 WRITE (L*3) CMPRO330
85 WRITE (L*86) C04PRO340
22 WRITE (L,431RsRSSM*RSQUOT#FQUOTo5LANK CMPR0350

00 23 1.1,2 CMPR0360
23 WRITE (L*5) CMPR0370

WRITE CLo6)NOMRESSoESQUOTo8LAN( CMPRO360
WRITE (Lo7)CORR,8LANI CNPRO390

64 D0 27 Im1I9ICT*4 CMPR0400
LASTE 1+3 CMPR0410
IF(LAST-IRCT)51 .51.52 CMPRO420

52 LASTaIRCT C04PRO430
51 IWxLAST-141 CMPRO440

IFC 1-1 )53.53,54 CMPPO.50
53 FORM (3)mUBCDA(IW-1) C14PRO460

FORM (8)o8C06(IW) CMPRO47O
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WRITE(LFOPM )8(I)o(B(K)sJ(K ),I(UZoLAST) CWM0R4S0

GO TO 27 CPRO4 90
54 FOPM2(2)zBC0A(IW) CMPR0500

FOPM2(7)*SCDC( 1W) CMPRO510

WQITE(LsPORM2)(BtK)sJ(K )9KwI9LAST) C04PRO520
27 CONTINUE C MPR0530
38 RETURN CNPPO540
64 1.0 CMPR0550

CALL Fix CMPRO560
00 101 .K*I*NNNSAV C14PR0570
IP(LOTJ.K)l0IlO*O~sI0I CMPRO580

100 161+1 CMPRO590
J(I~J- CMPRO600

101 CONTINUE CMPRO610
GO TO (65*66)*LL CMPR0620

65 WRITE (LoI)PGLBBLANK CMPRO630
GO TO 80 C MPRO64 0

66 D0 67 T-1,6 CMPRO650
67 WRITE CLs2) CMPR0660
80 WRITE(L#S)SELECT*LIT CMPRO670

WRITE (L993) CMPR0680
LLw3-LL C MPR0690
GO TO 85 CMPR0700

1 FORMAT(IN1,IOA~o39X/II9XoAl) CMPRO710
2 FORMAT(IH 9119X) CMPRO720
3 FORMAT(9HOMAIN RUNsIIIX) CMPRO730
4 FORMAT(I1M REGRESS1ON,2OX.I5,1X*F2O.O9,1XeF2O.09.1XP2O.O9.2OX.Al3CMPR0740
5 FORMAT( IMHOPEGRESSION9109X) CMPR0750
6 FORMAT (6HOERROR.25X, 15' iXeF2Ceog. 1X.20.09.4IXeAI I CMPR0760
7 FORMAT(12HOCORRELATION,4X.FlO.9,93XAlI CMPR0770
8 FORMAT(32HOINDEPENDENT VARIABLE SELECTION sASsIXt52A1 .27X) CMPR0780

83 F0QMAT(100Xi5H 41SK) CMPRO79O
86 'CRMAT(IHO,33XZNDF,1l3X42HSS.19X,2HM~S,9X,11F.30X) C14PRO800

END CMPROSIo
T SU8TYPEsFORTRANsLMAP*PBIN FIX 000

SUBROUTINE FIX FIX 010
COMMON A(51,51).BSDEV(51),B126OI)sYY(7OO0)eX(52),XO(51) FIX 020
COMMON AVV(52),YSDEIV(7000),AW(51),RECMNDRMVPLNNNSAV.NNN.LOT(51 IFIX 030
COMMON' NNL.DETERMNOBS.TOLRS.TOLCESERROR.NPED.ITOTAL.NN0P0,1CASEFIX 040
COMMON RSSMOaISPIP.Njc25),m4.rIRm(7),KNUM.KWUM.t4sMI.NQI25,,10 FIX 050
COMMON NNXANNSAV,$OEVAKP(E1.5I3,BS(52),SI52,52I.PGLBI10) FIX 060
DIMENSION LIT(1Z) Prix 070
EQUIVALENCE(LIT(II IS(1396)) Fix 080
DATA I(ZEQOtIMO)o0ONE(1I2,I~o8LANK(IH Fix1 090
DO 3 Ia) .P#.NSAV Fix 100
IF(LOT(I )12*2*1 FIX 110

I LIT(ImuONE FIX I x12
GO TO 3 FIX 130

2 LIT(I)UPCZERO Fix 140
3 CONTINUE FIX 150

DO 4 IuP#JSAVo52 FIX 160
4 LITlI)wKBLANK FIX 170

RETURN Fix ISO
END Fix 390

TSU9TYPE#FOIRTPANsLMAP#P8S1 N AUSSOcO
SUBROUTINE GAUSS SAUSSO1O
COMMON A(51.St2,IPIVOT(S1i.S(S91,Sh14YI'V7000IeX(5t*)XO(5II GAUSSOZO
C0OMMON AVVISZ).YSDEVt7000).AWISl).RIECMNOR.MVPLINMSAVNW4*4LOT(51)AUIS@030
COMOON W& s ETEftNsNOS. oTOLSIS V0LCES sEFAR0ANPE0. I TOTAL* V oNopo I CASIGAUSS040
COMMON RSM.SI.~2)MI()~J.WMM.INIS.0 GAUSS050
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COMMON NNXA.NNSAVSDEVAKP(P5.51),BB(52),S(52,52),PGLB(IO) GAUSS060
COMMON IN(Cg 10)oioISM1 JLIMNNZNTAPE GAUSSO7O
COMMON SELECT91BIDoIBIDS GAUSSOBO
DIMENSION INDEX(5192) GAUSSO90

C GAUSSIO0
EQUIVALENCE (NsNNN) GAUSSIIO

EQUIVALENCE (YY(i)oINOEX(Il GAUSS12O
EQUIVALENCE (IROW*JROW)s (ICOLUMJCOLUM)o (AMAX, T, SWAP) GAUSS130

C GAUSS140
C INITIALIZATION GAUSS 50
C GAUSS160

EPROz0*O0 GAUS3170
Mu i GAUSS180

10 DETERM=1,O GAUSS190
15 DO 20 J=IoN GAUSS200
20 IPIVOT(J)=O GAUSS210
30 DO 55C I=14N GAUSS220

IGO=! GAUSS230
c GAUSS240
C SEARCH FOP PIVOT ELEMENT GAUSS250
c GAUSS260

40 AMAX=0.0 GAUSS27O
45 DO 105 J=IoN GAUSS280
50 IF (IPIVOT(J)-I) 60, 105e 60 GAUSS290
60 DO IOU K=IoN GAUSS300

70 IF (IPIVOT(K)-I) OoOO899 GAUSS310
80 IF (ABS(AMAX)-A8S(A(JsK))) 85s 10J, 100 GAUSS320
85 IPOw=J GAUSS330
90 ICOLUM=K GAUSS340
95 AMAX=A(JqK) GAUSS350

IGO=2 GAUSS36O
100 CONTINUE GAUSS37O
105 CONTINUE GAUSS38O

GO TO(tV6ollOoYGO GAUSS390
106 DETERM=0.0 GAUSS400

GO TO 740 GAUSS410
110 IPIVOT(ICOLUM)IIPIVOT(ICOLUM)+I GAUSS420

IF (A(ICOLUMeICOLUM))130o899sI30 GAUSS43CC GAUSS440
C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL GAUSS450
C GAUSS460

130 IF (IROW-ICOLUM) 140, 260, 140 GAUSS470
140 DETERM:-DETERM GAUSS480
150 D0 200 LxI*N GAUSS490

160 SWAP*AtIROW*L) GAUSS5O0
170 A(IROW*L)mAIICOLVML) GAUSSS5O

200 AIICOLUML)OSWAP GAUSS520
210 00 250 Lute M GAUSS530
2P0 SWAP=B(lROW#L) GAUSc540
230 B(IROWL)uS(ICOLUMoL) GAUS6550
250 BIICOLUMoL)USWAP GAUSS560
260 INDEX(IlISIROW GAUSS570
270 INDEXUls2)uICOLUM GAUSS580
310 PIVOT -A(ICOLUMsICOLUM) GAUSS590
320 DETEPM-DETERM*PIVOT G..USS600

C GAUSS61O
C DIVIDE PIVOT ROW BY PIVOT ELEMENT GAUSS620
C GAUSS630

330 A(ICOLUM, ICOLUM)sI10 GAUSS640
340 00 350 L3IN GAVSS65O
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350 A(ICOLUML)zA(ICOLUML)/PIVOT GAUSS660

360 00 370 LzIM GAUSS670

C370 B(ICOLUMoL)uB(ICOLUM*L)/PIVOT 
GAUS~S680

C REDUCE NON--PIVOT ROWS 
GAUSS690

C 
GAUSS700

3S0 DO 550 LJIw.N 
GAUSS72O

390 1P(LI-ICOLUM) 400,o 550, 400 GAUSS720

400 TsA(LI#ICOLUM) 
GAUSS734O

420 A(LI9ICOLLJM)x0.0 
GAUSS740

430 DO 450 LcIN 
GAUSS750

450 A(LlL)uA(LIL)-A(ICO)LLJML)*T 
GAUSS760

460 DO 500 LxlM 
GAUSS770

500 B(LI*L)=8(L1.L)-B(ICOLUMoL)*T 
GAUSS78O

550 CONTINUE 
GAUSS790

C 
GAUSS80O

C INTERCHANGE COLUMNS 
GAUSS62O

C 
GAUSS820

600 DO 710 IsbgN 
GAUSS830

610 L*N+I-T 
GAUSS840

620 IF (INDEX(L.I)-INDEX(L*2)1 630o 710s 630 GAUSS860

630 JPOWOINDEX(Lot) GAVSS970

640 JCOLUM=INOEX(L*2) GAUSS880

650 00 705 KIsz1N GAUSS890

660 SWAPwA(KsJlROW) GUS0

670 AlKoJROW).A(K*JCOLUM) 
GAVSS900

700 A(KsJCOLUM)=SWAP 
GAUSS910

705 CONTINUE 
GAUSS920

710 CONTINUE 
GAUSS930

740 RETURN 
GAUSS940

899 EROR019I0 
GAUSS950

RETURN 
GAUSS960

END 
GAUSS970

T SUBT'VPEsFOPTRAN*LMAPoPSIN 
GAUSS9O0

SUBROUTINE IOENTM 
IDENTMOO

COMMON A(51,51),BSDEV(51)OB(2601),YY(70001.N(52),K0(51l IOCNTM@2

COMMION AVV(52).YSDEV(7000).AW(51),RECM.NORMVPLI44NSAVNNNLOT(51)IOEN4TM03
COMMON NNLsDETERM*NO8S*TOLI:.TOLI2 .ERRORNPED.ITOTAL.,NoP4POoICASEIOENTMO4

COMMON RSSMO. ISKIPNJ(25) ,M4,PIRM(7) ,INUM4g(MUMMS.MI .NQ(25) * 1 IDENTM05
COMMON peNXA*NNSAV*SDEVoAKP(5I*9l)#W I52)*SI5Zs52lPGLd(I03 IDENTM06

DIMENSION AIDENT(51*51) I DENTMO?

EQUIVALENCEt IDGO*NOBS) IDENTMOS
EOVIVALENCEIAIOENT(l),yytII) IDENTMO9

1 00 3 Is1 .PNN IDENTMIC
00 6 Kwb.NNN IDENYPi 1

SUM*04 IENMI

00 5 ju1.P#*EENP1

5 SUN*SuM4AlIeJ)*AICPtJ.I) IOENTMIA
AIOENT( o)*U IOENTMaS

4 CONTINUE IDCNTM16

3CONTINUE IOCNTMiS

10600.1 IDENTMIS
00 7 1 *1 po I DENTMI71

16 JP(ADSIAIOENT(lI)-I.0)-TOLIII7,SS IDENTM&I

a 1060.2 IDENi MZO

17 IP(ASS(AIOENTU.I 110) TLII7410 10 IET

7 CONTINUE 
IOENTZ23

GO TO(20*82OI.IOGO I DENT""3

DO 0013 IsIoN I DENTM26
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Kul+&1 I DENTM27

00 13 J=KsNMN I DENTM28

TF'A8S(AIDENTflJ)2-TOLII1)4,I3.I5 IET2

14 IF'ASS(AIDENT(J,! Il-TOLII )13,I5.I5 IET3

:3 -ONTINUE I DENTM31

GO TO 220 IDENTM32

10IGOM I DENTM33

15 GO TOI*2)IGDENT M3

18 1Dm IDENTM36

220 RETURN IDENTM37

END IDENTM38
T SUBTYPEtFOPTRAN*LMAP*PSIN IO 0

SUBiROUTINE IVOR IVOR 010

c IVOR - INDEPENDENT VARIABLE SELECTION SUBROUTINE FOR THlE ORDERING OF IVOR 020

C INDEPENDENT VARIABLES ACCORDING TO MAGNITUDES OF REGRESSION IVOR 030

C SUMS OF SQUARES. IVOR 040

COMMON A(5I,512,BSDEV(5U,8SI2601).YY(700@),E(522.XD(SI) IVOR 050

COMMON AVV(521.YSDEVi70O0),AW(5I2.RECM.NORMVPLPNWSAi.NNNLOT(51)IV0R 060

COWMON l04L.DETEPM.NOBS.TOLRSTOLCES.ERPOR.IPEDOITOTAL.N.NOPOICASEIVCR 0`0

COMMON P~-tOIS IV2OR4FR%')KUoNUo~~o*t")~ 0,1z¾

COM"ON NNXA.NNSAV.SOEV.AKP(P51.512,BB(52).S(52,52).PGL3(102 IVOR oz~0

COMMON IN(49.IO).IRISMl.JL.IM.NN.MSN1APE IVOR 1cc

COMMON SELECT*1BID*1BIDS ZVOP -:,-

DIMENSION LAT(51) IVOR 120

EQUIVALENCE (LATXO) IVOP 1-4c

DATA TOLSS(*5E-8) IVOR 141w

IFi 10 2500.500.501 IVOR itc

500 IQwNNSAV-3 IVOR 160

501 KOUNTsO IVOR 170

1GO2m1 IVOR 160

C SEE NOTE IN BIVOR ON TH4E VSE OF MA. IVOR 190

MA.o 0 VOQ oCC

GO TOtl*2)*ISKIP IVOR alC

I WRITE(13*1031 IVOR 220

t03 FOQMAT(56mO*** I V 0 R F I N A L C 0 M P Q II H N S I V 9 #***IVOR ~jQ
1*64X/120X) IVOR 240

2 DO 101 1.2o51 IVOR ?50

101 LOT(I)wI IVOR 260

ITOTAL81 IVOa 270

LOTIS ).0 IVOR ZOO

00 200 IstmI IVOR 290

ISTART. ITOTAL.I IVOR 300

ITOTALmITOTAL* N.D(I) IVOR 310

201 NUMo2 IVOR 320

KASSQ*O IVOR 330

C sKASSR COUNTS THlE KNDMER OF ASSQ-S COMPUTED IVOR 340

00 300 JoISTART*ITOTAL IVOR 350

IP(LOT(JI 2301.307.305 IVOR 300

301 LOY(J)0O IVOR 370

C IN IVO0*ERMORwI*0 MEANS TMAT REDUCM WILL. NOT PRINT IDENTIFICATION IVOR 360

C AND IVSoEPROR.0.0 MEANS PRZN1. IVOR 390

eAquopo.0 IVOR 400

302 CALL REDUCM IVOR 410

3 CALL CASSR(KASbR*KG02 Ivan 420
308 KASSRUKASSR IVOR 430

GO T01303s30*)*KGO IVOR *4.0

303 LATfKASSR)wJ IVOR 4so

304 L0T(J)uI IVOR 4600

GO TO 300 IVOR 470
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307 NUMuNUM+1 IVOR 480

300 CONTINUE IVOR 490
IFKASSRI221 .227*204 IVOR 500

202 IP(NJ(I3-#tJ)22l*203e201 IVOR 510

210 DO 211 Lw2,ITOTAL 7VOR 530
2'1 LOTIL)=O 'vI )Q Q

CALL REDUCM 
IVcO #.

219 CALL AST jv~ .-7c
P(OUNTRKOUNT.j 1VCR

IP~ JO-KOUNT 3221.220.200 IVOR 54-1
204 IF(KASSR-I)221.4OOs401 I ý-'Q'o
400 IXMAXuI iv)v 610

GO TO 402 620
401 DO 229 Jx22KASSR iV0R 630

1F(ASS((AWf13-AW4J ,3/AW(I1)-TOLSS)229s2299404 IVOR 640
229 CONTINUE IVOR 650
405 1602Z2 IVOR 660

JXMAXzj IVOR 670
GO TO 402 IVOR 680

4C4 CAL.L "~AA,~N~~NIejIIVOR 690
402 IMAXOLATIIXMAX) IVOR 700

LOT (IMAXI *0 IVOR 710
ERRUQO*a0.,) IVOQ 72?0
CALL REDUCM IVOR Ti0
CALL AST JVOP 74C

KOVNTOKOUNT~ I IVOR 7tC

1Ff I0-KOVNTl22I,302o205 IVOR 76C.
5:;2 1602slGO2+2 IVOR *":

?05 GO TO(202,'OS.220o408).1GO2 IVOR leo
200 CONTINUE !VOQ -9c
223 RETURN IVOR 800
227 POINT 226 IVOR Bic
220 WOOW*ATL30."4N0 VALID ASSOS WERE COM4PUTEo.) IVOR 920

GO TO 220 IVOR 830
4:0 POINT 411t*(LOT( )o!Iw.P#0NSAVj IvOQ F160
411 FOPMAT(:Sm4PEQFrECT PIT*lVS& *gSunj IVOR etc

GO TO 220 IVOR 860
211 STOP IVOo 870

ENO IVOR sac
T SUSYPF*POOTQANL1MAWPPIN MAXMIP400

SUBPOUTINg NAKi~NININAAMAKAMOIN.IXMAX.IKMINI MAXMINOI
DIMENSiION AIN) MAXMIN02
AMAKUAJI (3) Ax"fN0
LiINSAM&X MAXNI N0*
IXPIAK. t 04A MMI NO 5
IKM IN' I M4AXN 1 Noes
FIN*I~EO.160O TO 2110 PIAx X1614 1

00 1 I02ok 04AX"Ildoe
IF(A(IloGE*AP4AK)GO TO 2 a KM 1MN09
IPIAfItl'#GToA#4I0*GO TO a MAKN4IN1O
IXMINwI MAX24It'I
AMIN.Af( 33 AXWIN:?

Go TO I MAXUIPIN13
2 AMAXwAm I)mAEMaI '34

IXNAXU I 14AXMIPgs

~1I C ONI NUE UAXWINI*G
11 fPTuat4 MAxa1N3 7

ENO "A X14N tol
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T !ijFBT 'rE0 Ol4TQAN*LMA0.oP8IN PRE~VAoOO

SUBPOOV1NE PPEVAP(IVOUNT. ZNDX) PQEVARO I

COM4MON A'51I.~ltBSDEV(51),8(26CI).YY(7OCO).X(52).XD(511 PREVAR02

(COMMON A V5)oSF(00oW5 PCoDPMP~lJAoWN O 5 PEA0

C0OMMON NNL. OF 1E~N9oOQ9OCSEQQ cD TCA N.C~ CA SEDQLVAQ'ý

COM0MON C)= A'ýO-

COMMON A*4XA.NNSAVSDEV.AKI(PCSI51).BB(52),S(52,521,PGL3(10) ::EVA4C,-,

COMMON JN(49* 103 l* 1PJ5MJ ,JL!MNN.M.NTAPE P'FVAý07

COMMON SELFCTt8I~o.IDISPFVAP

DIMENSION XX(51) P/ ;

EOUIVALEKCE(XX(II)oCI'549)) PPEVAP 10

KCOUNTzKOUNT+I OQEVA~1 I

IF (N9*SAV 3850.66.650 PPE'JAP IS-

650 JJJ w QE~vAPI 3
DO 652 iJxz2.PNXA PIREvAR1'4
IP(LOT (JJ) )I17!A65I*652 PPTjVAP)35

651 JJJaJJJ+l OQE V A;16

xEjjjl :Yrjj) PPEVAP17

AW(JJJ)-.AVV(JJ) PQP-A; 18
IFCJJ-? N0 )6,54*6549652 PRVAI Q

A54 Jnj-jj PQEVA02C

653 XX(JJJ)zXtijI DOE.VAP2 I

652 CONTINUE POEVAr.,?

PQINT 70%KOVNT*(KX(I3.Iw2oJ) PRW-VAQ23

00 468 !zZ.NNIN DRE WAt

GO, TO 1 l i ..6
t6 DO 6P lv2,o*.N DQ.VA;;

619 O(ljit X(I3-AVVU3 R-V ",

0PINT 1'*K'0UNTo(X(I3.tS2oIN0X1 PQFVAI-K;C

1066 VYtKO'VNT)NetlU PLVALRJI

D0 67 le~e NNN DiA.~

67 VYVKOUNT jvvg.KO0NT )*X(1 )&8( I PV-)
TEM XX aC*C PIL.VA,-),-'

61 TfMXKuTEMwX* £..j*JWXOII)*XDtJ) PQEW.i&.-"

FIN4VOL18IZ.83I01 eel? AC

Sit VSOEV MOUNT I-.SVOSORT ( I 04QCCM* TEMEE3 1 OF VA 1ý

6O TO 00PW 1

S it YS0rV (KOU'd) .lSOtVOSOP? IPECP.TEmX) 3Par vAQa I

soR CT VON o~k *~

104 STOPORLvAi j

END Pa~rVAQ44

11 SUG IYOE oF00 T RAN oL 004P * 0 1 O I N TV 01

S4AROUTI'4C POINTM4 PQI .4y sc I

COMMON AV(5t,5).8SOCVI?0S).B(AOIYit* @O@).E00*VLSZI.NO(5I *OTSIIPIP1"ý

COMMON NW*O..ETEQM*NC8S*1OL11.TOL12

COMMON SCSIPNt).4I1f¶.NMKU.6M.02Il aC:

COMMON WNA0NSVoSHV1 K SI* III 210S(2 ZIP4 101 m

DIMENSION £tCENT15I.9I3 Pal %i?-.

EQU IVALEN4CE I I0GO o MOSSl cftV

EOUIVALEkCC AIDENT (11 VYtII)l DQIN'-o
GO TO(u.2eZ42110tDOIOl

2 POINT 3 00I4'"I 1
3 fC.'-%Tf16"0OIENTITY M&TPji POINT0412

00 4 1 *11 $N PRINM10413
* POINT POIFO47lE0'*I1d
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,NW L RE I"iRT N-0 . 2 03 r

5 FORMATulHO*7E:748/(I~zqEl7s81) PRINTM15

GO TO(1,7s8t9)@IDGO PRINTM16
I PRINT 6sTOj-II PRINTM1 7
6 F0PMATU'0HODEVIAT!ONS CF ALL ELEMENTS OF THE IDENTITY MATRIX SMALLPAINTMIS
IFR THAN I(I)w aG9o.15H .RUN ACCEPTED.) PRINTM19
GO TO 220 L -INTM20

7 PRINT 1OTOLII*TOLIZ PRINTMZI
10 FOPMATl78HOr)EVIATION OF A MAIN DIAGONAL ELEMENT IN THE IDENTITY MAPPINTM22
ITRIX LARGER THAN 1(1) 9G9s ZIH BUT LESS THAN 1(2)z #69#15H *PUNPRINTM23
2 ACCEFTED.) PRINTM24
GO TO 220 PR!INTM25

8 PRINT I.oTOLI1 PR INTM?6
11 FORMATS84HOOEVIATIONS OF ALL MAIN DIAGONAL ELEMENTS IN THE IDENTITPRINTM27

IY MATRIX SMALLER THAN 1(1)= 9G9/68H DEVIATION OF AN OFF-DIAGONAL EPRINTM28
2LEMENT LARGER THAN 1(1 JoRUN ACCEPTED#) PRINTM29
GO TO 22C PRINTM30

9 PRINT 129TOL12 PRINTM31
12 FORMAT(7qHODEVIATION OF A MAIN DIAGONAL ELEMENT IN THE IDENTITY MAPRINTM32

ITRIX LARGER THAN 1(2)u *G9#ISH *RUN REJECTED.) PRINTM33
220 RETURN PRINTM34

ENO PRINTM35
T SUPTVPE*FORTRAN*LMAPoPBIN RDISK 00

SUBROUTINE RDISK(KOUNT. INOX) RDISK 01
COMMON A(5le51),BSDEV(51).B(2601),YY(70CO).X(52).XD(51) RDJSK 02
COMMON AVV(52).YSDEV(7OC0),AW(5l),RECMNDRtMVPLNNNSAV.NNLO(5)RIS 03
COMMON NNLDETERM.NOBS.TOLRSTOLCES.ERRORNPE~O. TOTAL.NNOPO. ICASERDISK 04
COMMON PSSMO.ISKIPNJc25,.M4,FIRM(7),KNUMKMUM.MB.MI.NQ(25),IQ RDISK 05
COMMON NNXANNSAVSDEVAKP(SISI),BB(52),S(52,52).PGLB(13) RDISK 06
COMMON TN(49,IO),IRISmIJLIM.NNM.NTAPE RDISK 07
COMM4ON SELECT,IBIOIBIDS RDISI( 08
DIMENSION IKEEPR(9991 RDISK 09
EQUIVALENCE (B(1602)oIKEEPR(1)) ROIS.- 10
REWIND 10 RDISK 11

I STARTzl RDISK 12
0O I IxINOR RDISK 13
IWHICH=IKEEPR( I RDISK 14
NUMBER I WHICH-I STAPT ROISK 15
IF CNUMBEP)2,3o4 RDISK 16

4 DO 11 JultNUMSER RDISK 17
It READ (10) SKIP RDISK IS
3 PEAD(lC,(X(K)9Ka2sNNSAV) ROISK 19

CALL PREVAR(KOUNT. INOX) POISK 20-
I STAPTS IWHICH+l P015K 21

1 CONTINUE P015K 22
GO TO 5 RDISK 23

2 STOP P01.5K 24
5 RETURN RDISK 25

END R015K 26
T SUBTYPEtFORTRAN*LMAP*PBIN RDIT 00

SUBROUTINE RDIT RDIT 01
C RDIT-A PROGRAM TO READ TAPE OR CARDS AND COMPUTE HIGHER ORDER RDIT 02
C PRODUCT TEPMS OF THE DATA. RDIT 03

COMMON A(5I,51),BSDEV(5fl,812601)sYYt7000),K452),XDtS1) RDIT 04
COMMON AVV(52).YSDEV(7000)oAW(51),RECMNDRMVPL.NNNSA.VNNN.LOT(51)RDIT 05
COMMON NNLDETERM.NOBSTOLRSTOLCESERROPNPED, ITOTALNNDPOICASERDIT 06
C0O4MON PSSMOISKIP.NJ(25).M4,FIRM(7),KNUMKMUMMBMI44'0(25). 10 RDIT 07
COMMON NNXANNSAVSDEVAKP(5I,5I),f3B(52,,S(52,52).PGL9(10) ROIT 08
COMMON IN(49#I0),IRsISsMleJLIMsNNMq TAPE RDIT 09?1COMMON SELECTsISID418I0S ROIT L0
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EQUiVALEINCE(Y(1)s6(53,)
EQUIVALENCE (LiMeNNXA) POIT 11
EQUIVALENCE(KNUMNUM),(KML5MMUM) RDIT 12
INTEGER TAPE PDIT 13

3 00 33 Jxl*JLIM*NUM PDIT 14
JI zJ+MUm POIT 15

IF(JLIM-J1)I!.10*IO PDrT 16
11 JlzJ.JM RDIT 17
10 IF (J)-l)8o8oQ PC) IT 18
8 PEAOCTAPEFIPM)M1.(V(j2),J2=JjI) RDIT 19

JF(MI )2933#2 PRUT 20
9 READ(TAPEoFIPM)MZ,(V(j2).j2zJ1 J1) P017 21

33 CONTINUE P~jT 22
X(NN)=Y(l) PDRIT 23
Y(1 1.1. POIT 24

4 MwM+l PDIT 25
IF ( S1200o200, 100 PDIT 26

100 DO 5 Kz1ISI RD17 2'
(KK IR.K+1 ROIT 28
V (KK 1=!o PORT 29

DO 5 L=1,10 ROIT 30
INDEX= INCKtL) POIT 31

5 Y(KK)=Y(KK)*Y(INDEX) PDIT 32
200 DO 6 J=2#LIM POIT 33

6 X(J)-Y(JI PRIT 34
2 RETURN ROIT 35

END PORT 36
T SUBTYPEtFORTRANeLMAPPBIN REDUCMOO

SUBQOUTINE REDUCM REDUCMO'
COMMON A(51,5i),BSDEVc51),B(2601),YY(70O0)oX(52)oXD(51) PEDUCM02
COMMON AVV(52),YSDEV(7000),AW(51),PECMNDR.MVP'LNNNSAd,oNNN.LOT(51)REDVCM03
COMMON NNLDETEPMNOBSTOLPSqTOLCESERROP.NPEDo1TOTALNNDPO. ICASEPEDUCM04
COMMON PSSMO,1SKIP.NJ(25).M4,FIRM(7),KNUM.o<MUM.MB.MI.oJ0(25).OQ ;ýEDUCM0b
COMMON NNXANNSAVSDEVAKP(5r,5I,,85c52,,Sc52,52),PGL9(10) REL"UCmQt
COMMON IN(49,10) ,IPISMI JLIM.NNMNTAPE -EC)OCMC-7
COMMON SELECTsIB109!HIDS REDUCMO0l
EQU IVALENCE (L I sNNN) PEDucmot

LI uO REDUCM 10
DO 95 IwI*IT0TAl RE:UUCm11

91 LImLI+1 REDUCM13
B(LI )=S( I .NN') PEDUCM 14
B8(L )=S( 1,NNL) REDUCM 1
JuL 1-1 PEDUCM16
DO 200 Lc~ IsITOTAL REDUCM 17
IF(LOT(L)I 200s203s200 REDUCM lB

203 JzJ+l REDUCM 19

AKPC J*Ll)=S(IoL) REDUCM20
AKP(LI ,J)nS I sL) REDUCM2 1
A( J#LI)cSCILI REDUCM22
ACLIJ)mSlI oL) REDUCM23

200 CONTINUE PE.DUCM24
95 CONTINUE PEDUCM25

Nm L, I -I PEDUCM26
IF'(ERROR )219,2199220 REDUCM27

219 PRINT 594,PGLB PEDUC M28
594 FPOMATC1HsIIA8) QEDUCM29

PRINT 5760,SELECT,('.0T1I),IlnlNNNSAV) REDUCM30
5760 FORMAT(32HOINDEPENDENT VARIABLE SELECTION 9A8*iX.o3lI1) REDUCM31

ICASE. ICASE+1 RE DUC M32
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220 FTURNEND 

QEDuC M33
REDUCM34
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